
Nam Shub – A Text Creation and
Performance Environment
by Jörg Piringer

Abstract
Nam Shub is a tool and software art project for the creation, modification and performance of text
oriented electronic art ranging from experimental literature to visual sound poetry performances or
interactive art installations.

The discussed project is the second version or rather a newly developed and enhanced version of
HyperString which was presented at e-poetry 2005.

This tool will be made available under an open source license in the future so that everybody can
not only use but alter and expand it.

Introduction
Nam Shub is a text processor, text generator and performance system. It is designed as a tool for
both creators and performers of text and language oriented arts. You could see it as a combination
of a modular live performance system like for example the music programming environment Pure
Data [1] and a text processor.
Common text processor programs (like MS Word, Open Office Writer etc.) however only offer a
very limited range of real text processing tools:

● Spell-checker
● Substitution
● Summarize

So I rather drew my inspiration from music and graphic programs which usually offer features like:
● Real time interactivity
● Scriptable and chainable operations
● A large quantity of different functions

I added functions to remove vowels or consonants, change the order of letters, split words into
syllables, random operations on a word and letter level, complex substitution, text synthesis and
tools for displaying text. Additionally all these functions can be combined and chained through a
powerful scripting language and are therefore extensible.

Precursors and Influences
The discussed program and it's concepts are of course strongly influenced by the works and ideas of
literary modernist avant-garde movements like Dada,ism Surrealism, Lettrism, Oulipo, Wiener
Gruppe and the Beat-poet's use of the Cut-Up technique.
These movements and groups tried to extend the field of literature through the introduction of
chance or in contrast through the implementation of strict rules for the generation of texts. Almost
all of them were working with the mere materiality of (found) letters, words and printed characters
some of them even creating early concepts for computerized poems.
Although Nam Shub is inspired by these early attempts it focuses on computer specific aspects of
electronic poetry: dynamic and real time generation and manipulation of text.

Text Generators
In the following I'd like to describe some text generator softwares that I feel are important for the
discussion of Nam Shub. It will not be an exhaustive history of text generators but rather a
subjective list tailored to my specific interests.

Mark V Shaney [2] was created by Bruce Ellis and Rob Pike in 1984 as a text generator for a fake
Usenet personality. They implemented a basic Markov chain analyser and resynthesizer to generate
text out of found texts. It was a very simple program without any possibility to control the results
but through the access to a large corpus of text it could fool other Usenet users into thinking that
those strange postings were produced by a real person. Markov chains as a text generating tool have
since been widely used in text processing computer programs and of course plays a prominent role
in my project as well.

Andrew C. Bulhak follows a different approach with his Dada Engine [3] and the Postmodernism
Generator [4]: the software generates random sentences by using recursive grammars. Depending
on the structure and the encoded dictionary of the grammar it can produce for example nonsensical
but grammatically correct philosophical essays like the Postmodernism Generator. Like Mark V
Shaney Bulhak's program offers no way of influencing the outcome of the generation other than
rewriting the grammar. Generative grammars are at the moment only poorly implemented in Nam
Shub but once improved the user will have more control through the specification of real-time
parameters during the generation process.

Ray Kurzweil's Cybernetic Poet [5] offers the user more control over the process of generating
poems. It is in fact “disguised” as a poetic assistant that offers advice such on how to continue the
text the user is writing in a text-editor-like interface. The program offers assistant “personalities”
ranging from Blake to Yeats each processing their own literary corpus to suggest alliterating words,
rhymes, possible next words or completing the rest of the line or even the rest of the poem. The
actual generation process is hidden behind a recommendation interface so it is up to the user to
follow the given advice or rather choose her own word or sentence.

An even more playful project is C. P. Bryan's Cut 'n' Mix ULTRA [6]: it seems to be inspired by a
mixing desk for audio signals. Four text tracks can be mixed together while controlling the
“loudness” of each track. Additionally text effects can be applied such as randomly rearranging the
resulting words, replacing words with synonyms, swapping words with randomly selected words of
the same category and formatting the output to resemble song lyrics. The immediacy of changes in
parameters and the real-time application of text manipulating functions are very similar to those in
Nam Shub and follow the same idea of text generation as a kind of “poetry sculpting”.

Taylor Berg's Darwin [7] enables the user to create poetry through a process that mimics genetic
evolution. The user plays the role of natural selection by defining the fitness for survival through
acting accordingly to his aesthetic preferences. Each time a user visits the project website he is
presented six different automatically generated poems. After reading each poem he is asked to
select the two he likes most and to enter their number into input fields. After pressing a button the
algorithm generates a new set of six poems deduced from the two selected parent poems. Each new
generation is recorded and can be reproduced and refined through the same selection process by
each visiting user. This evolutionary mechanism can create very complex artistic results just by user
driven selection of randomly generated structures. Nam Shub offers a similar feature for the
algorithmic programming of new text-modifiying functions.

Apart from Jean-Pierre Balpe's elaborate text generators one particular project caught my interest as
it used an aspect of human-computer-interaction that seems to be perfectly relevant for electronic
poetry but is rarely used. Labylogue [8] (by Jean-Pierre Balpe, Jean-Baptiste Barrière and Maurice
Benayoun) was a networked interactive installation in the form of a virtual labyrinth built out of
text walls. The users in three different cities could communicate by speaking into a microphone and
move with a joystick through the text corridors. Simultaneously a computer equipped with a speech

recognition software listened to the users' voices and tried to understand what they were talking
about to generate new texts for the walls accordingly. My project also uses speech recognition as
method to input textual data during performances and also because I think the inherent problems
and flaws produced by these speech recognition systems can be a rich source for poetic content.

Nam Shub's means for the creation and modification of text draw inspiration from the above
projects but also go beyond them as the unification and combination of these tools can possibly lead
to a higher level of complexity in the produced results.

Visual Poetry Software
A couple of remarkable works of animated and interactive visual poetry have been published in the
recent years but since this paper is about instruments for the generation and manipulation of text I
will concentrate on more general software than those implemented for these very specific works of
poetry.

Apart from the commercial softwares than can also be used to produce animated or generated visual
text like Macromedia Flash or it's little brother Swish1, there are not many applications that were
made specifically for visual poetry but quite few that were created as typographic tools.

Estudio Paco Bascuñán's and Inklude's RoboType [9] for example is a typographic editor that has a
set of features that enables the user to create classic visual poetry for the web browser. You can
position, resize and turn letters in four different fonts and then save your creation to a public online
gallery. It has however no means to create algorithmic poetry or animation.

An example for an application that explicitly generates visual poetry is Poem Generator [10] by
Amorvita. It creates colourful constellations on the screen by either randomly choosing presets or
by user supplied words and characters. The text is arranged randomly but obviously limited by
constraints that give the result the appearance of concrete poetry like for example Eugen
Gomringer's work.

Eugenio Tisselli's MIDIPoet is also capable of producing visual poetry but will be discussed in the
next section because of it's performance oriented aspects.

Poetry Performance Software
There's only one performance software I know of that was specifically designed for text based art:
Eugenio Tisselli's MIDIPoet [11] is a software that allows the manipulation of digital text and
image in real-time. Works composed of interactive text and image can respond to external input like
MIDI2 messages or the computer keyboard. These inputs can influence the position and appearance
of text and images.

MIDIPoet can however not generate or manipulate text other than simply substituting it so it can be
seen as a visual poetry performance tool rather than a tool for real-time generation. Musical
performance and programming systems like Max/MSP [12], Pure Data or ChucK [13] seem to offer
more in regard to flexibility, versatility and text manipulation but are cumbersome to learn and
handle for poetry.

Nam Shub offers the features and openness of the above musical softwares but concentrates on
special tools for text generation, modification and output.

Generation and Modification
The text generation and modification tools of Nam Shub were designed to be as flexible as possible

1 which is even more suitable for (animated) visual poetry in my opinion than Flash
2 MIDI (Musical Instrument Digital Interface) is an interface and a protocol for musical data and can be used receive

input from devices like musical keyboards, drum pads, motion controllers etc.

without making them to cumbersome to use. To be able to control the degree of complexity Nam
Shub can generate or modify text on three structural levels:

● Micro structure: operations modify or generate character data or strings of characters
● Macro structure: more general parameters like grammar or rules for substitution or

generative systems are altered
● Meta-structure: operations on the program structure or the meaning of texts

Micro Structure or Character Level
On the level of characters or character strings operations work on a non-contextual basis. The
majority of these operations take no assumptions or have no knowledge about the data they operate
on. They simply transform data according to simple algorithms.

Examples:

sort sorts a string:
this is a test -> aehiisssttt
rip repeats characters in a string or swaps them randomly:
this is a test -> thshiss is a testtt
spamizide makes the string look like e-mail spam:
this is a test -> t-hís s. tést
permutations generates all permutations of a string:
abc -> ["abc","acb","bac","bca","cab","cba"]

These functions be chained to more complex operations:
lambda x: map(spamizide,permutations(x)) applies spamizide on all permutations of the string:
abc -> ["b","b","bä","bá","b","bä"]
lambda x: concat(splitWords(shake(concat(map(cmabrigde,splitWords(stretchRnd(x))))))) is a
complex operation:
this is a test -> xstthes'seaah.etett aTas

There are however some character level functions that work between micro and macro level like for
example splitting words into syllables. This algorithm assumes that the given word is in English
language and applies the rules accordingly. It would also work on transcribed Russian texts but
produce no convincing results.

Macro Level
To control text on a macro level Nam Shub utilizes a variety of generative systems. You no longer
have to take care about single characters or strings but instead of parameters that tweak the
production or modification of a whole or parts of texts.

Nam Shub incorporates a couple of modules for the (semi-)autonomous generation or modification
of complex text and control3 data. Some of these modules involve a high degree of randomness and
are only controllable through specifying certain boundaries.

At the moment there are four available macro level modules:

● Markov chains: a tool for stochastic analysis and resynthesis of texts

● Lindenmayer systems: a formal language for text replacement

● Cellular automata: very simple rules create emergent complex structures

● Grammars: linguistic grammatical structures for the creation of natural language texts

3 for example control data for the text turtle graphics

Markov Chains
Markov Chains were invented by the Russian mathematician Andrey Andreyevich Markov (1856 -
1922) as a tool for the stochastic analysis of dependent events.

It basically measures the conditional probability distribution of future states, given the present state
and a number of past states. Applied to text that means the likelihood that a certain letter follows
another. How likely is it for example that an "h" is follow by an "o"?

By analysing a corpus of text this tool can model the text's stochastic properties and almost recreate
the original through weighted randomness. Markov Chains have been broadly explored in computer
generated literature [2] but in my opinion still has a lot to offer especially in conjunction with other
methods described here.

The first lines of William Wordsworth's poem “I wandered lonely as a Cloud4”:
i wander'd lonely as a cloud
that floats on high o'er vales and hills
when all at once i saw a crowd
a host, of golden daffodils
beside the lake, beneath the trees
fluttering and dancing in the breeze

analyzed with the Markov Chain algorithm can produce results like this:
i wand daffodills
floats ande in at o'ering a crowd
bes at flutter'd host, brees
whe lake, o'er'd lake, oneats ales
flutter valls
float floathe thathe the breezei wancing as aleside treezei saw a

Lindenmayer Systems
L-systems [14] were introduced and developed in 1968 by the Hungarian theoretical biologist and
botanist Aristid Lindenmayer (1925 -1989). These systems are formal grammars originally invented
for modelling the geometric structure of plants.

They can be used as simple systems for replacing and also generating texts.

L-systems are defined as a tuple of an alphabet V, a set of constant symbols S, an axiom or start
symbol ω and a set of rules P that define the way variables can be replaced with combinations of
constants and variables.

For example:

V = {a,e,i,o,u}
S = {b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,x,y,z}
ω is set according to the input
P = {(a => aba), (e => ebe), (i => ibi), (o => obo), (u => ubu)}

ω = “this is a test”

this is a test => thibis ibis aba tebest => thibibibis ibibibis
abababa tebebebest

L-systems are used in Nam Shub not only for text creation but also to control text turtle graphics.

Cellular Automata
Cellular automata model n-dimensional spatially discrete dynamic systems where the state of each

4 I removed punctuation marks and converted upper case letters to lower case to enable the Markov algorithm to
associate more letters

cell at time t is a function only of the states of a finite number of cells at time t-1. This function or
rule is the same for all cells. So the generation of a new line of text is only dependent on the
previous line and very simple rules.

Despite the simplicity of the provided rules cellular automata can produce complex patterns as two
results of my experiments with cellular automata for text generation show:

Nam Shub at the moment features only a very simple one dimensional cellular automaton where
each cell represents a character and a new generation in time is a new line.

For an in-depth discussion of cellular automata see [15]

Grammars
The support for grammars is at the moment limited to relatively simple context free grammars.
Context free grammars consist of productions or rules of the form V => w, where V are non-
terminal symbols and w is a string consisting of non-terminal symbols and terminals. Non-terminal
symbols can be replaced by the string w. The term context-free expresses the fact that the non-
terminal V can always be replaced by w, regardless of the context in which it occurs.

The rule S => NP VP for example means that the non-terminal symbol S can be replaced by the
non-terminal NP followed by VP or in plain words that a sentence contains a noun phrase and a
verb phrase. The rule for the noun phrase NP => Art Adj N means that it can be replaced by an
article following an adjective and a noun. So by consequently replacing non-terminal symbols
through productions grammatically correct sentences can be constructed by the program.

The following grammar for example
S => NP VP
S => S Conj S
NP => [Art N, Art Adj N]
VP => V NP
Conj => ['and','or']
Art => ['the', 'a', 'some']
Adj => ['blue', 'big', 'small', 'beautiful', 'ugly']
N => ['man', 'ball', 'woman', 'table', 'sausage', 'test', 'dog', 'house', 'toy']
V => ['hit', 'took', 'saw', 'liked', 'stole', 'found']

can generate nonsensical sentences like:
a beautiful test liked a woman.

a sausage stole a house or a table took a small toy and some sausage found the ugly dog and some big table took some toy.

I plan to incorporate more sophisticated linguistic toolkits and libraries like NLTK [16],
MontyLingua [17] and WordNet [18] which feature a vast amount of linguistic data and algorithms
to support the the grammatically correct generation of natural language texts.

Meta Level
Meta level modules control the macro and micro level through the modification of their parameters
or the program structure itself. They either reprogram (or generate new) functions that change the
behaviour of the underlying levels or they change the way a grammar for example generates natural
language sentences according to a meaning or topic.

Program structure
Nam Shub was designed as an open system and is therefore programmable and extensible through
the programming language Python.

„Python is a dynamic object-oriented programming language that can be used for many
kinds of software development. It offers strong support for integration with other languages
and tools, comes with extensive standard libraries, and can be learned in a few days.“ [19]

This language is broadly used in various technical and scientific fields especially in linguistics and
symbol manipulation. A large community of developers and researchers is publishing open source
libraries like for example NLTK or MontyLingua that can be easily incorporated in future versions
of Nam Shub.

To make these potentialities available for artists who are more than often not trained programmers I
implemented tools that enable the user to program without actually writing code.

● Record: Records a function like a macro. Live operations are recorded in a function and can
be called again by the user or a script.

● Mutator: With this tool you can write scripts without typing a single command. Like in
genetic algorithms you can try out different randomly generated variations of scripts and
choose the ones you like.

● Graphical programming: is a planned feature that enables the user to program by
manipulating graphical objects instead of typing code

Meaning
Another way of controlling the macro level would be to apply meaningful parameters and to
generate this “meaning”5 programmatically.

At the moment this module is not yet implemented but it will use data from common-sense
knowledge bases like ConceptNet that can be used for affect-sensing, analogy-making, contextual
expansion, causal projection and other context-oriented inferences described in [20].

Audiovisual Output
Additionally to simply printing or displaying text Nam Shub features some more performance
adequate methods of output:

● Speech: Nam Shub incorporates a text-to-speech module that can speak text with English
phonemes.

● Text graphics: the program can display typographic text in real-time

5 I use the term “meaning” here as place holder for a range of ideas from contextual or topical data to the human
concept of meaning.

Speech output
The open source text-to-speech software Flite [21] was modified so that it can also vocalize
combinations of phonemes that do normally not occur in English language. With these
modifications Nam Shub is now able to speak letter combinations like “fmsbwtözäu6” and therefore
is to my knowledge the text-to-speech software that is most suitable for sound poetry. Commercial
speech software tends to spell out words that could sound strange.

My software also includes a sequencer7 that can arrange the spoken words and noises in a rhythmic
grid and play them back in real-time.

Text Graphics
Nam Shub can output graphics via a modified turtle graphics paradigm inspired by the computer
language LOGO [22] but applied to text output.
In LOGO lines can be drawn via simple commands that move a pen (turtle) on the screen.
The following LOGO-commands draw a square of the size 100:
LEFT 90
FORWARD 100
LEFT 90
FORWARD 100
LEFT 90
FORWARD 100

The above draws a square by turning the turtle left by 90 degrees and then moving forward and
repeating this four times.

Text turtle graphics example
The turtle graphics of Nam Shub doesn't draw lines but sequences of text:

Random text turtle functions
Text can be also drawn in a more random way by applying uncertainty:

6 the first line of Raoul Hausmann's famous letter poem which was adopted by Kurt Schwitters for his Ursonate
7 a (musical) sequencer is a software (or device) that records or plays back sequences of timed control information

The control commands for the text turtle graphics are itself coded in a textual format and thus can
be modified or generated with the text functions of Nam Shub.

The following image shows text turtle graphic which parameters have been generated by an L-
system:

Performance
One main goal of Nam Shub is to enable a performer to create and modify text and language related
audiovisual electronic art in real time. To achieve the necessary flexibility and responsiveness
usability aspects have to play a prominent role in the design of the program.

I am currently in the process of evaluating ways for the input and output of data and commands
suitable for live performance so some of the following is at the moment still in an experimental
development phase.

Input
The user can control the parameters and functions of the executed scripts with a broad range of
physical controllers and interfaces to control the program like a musical instruments:

● Standard controllers like mouse and keyboard. similar to a standard point-and-click
interface known from conventional software

● MIDI and OSC are both protocols developed for the transfer of musical data. They are very
flexible and can be used with a lot of commercially available controllers like electronic
drum sets or musical keyboards.

● Gestural controllers enable the user to communicate with Nam Shub through movement of
the body.

● Web cams can be used as an input device for gestural control or in an installation context.

● Speech input can be used for issuing commands and entering text with a microphone

● Custom physical interfaces like for an example the open-source physical computing
platform Arduino [23] can be tailored for the users needs and communicate with the
program.

Live Coding
To be also able to control the meta level in real-time the program supports live coding through a
module called Playground. This part of Nam Shub enhances the usability of applying quick changes
to the program code as it works like a collection of post-it-notes that contain program snippets
which can be changed, stored, recalled and executed easily and in real-time.

Thus the user can incorporate the process of programming and refining the logical structure into the
live performance to create a permanent work-in-progress.

Possible Applications
Because Nam Shub includes the programming language Python it could generate all texts or visual
poems that could possibly be generated by a computer given enough processing power (or time) and
memory. Although this can be easily proven with the given Turing-completeness8 of modern
programming languages I'd rather describe typical case scenarios to illustrate the various possible
applications of the project.

Poetry Generation
In the following I'd like to demonstrate a simple example of text and visual poetry generation. The
system is of course capable of creating much more complex texts and also visual patterns, but I
chose a rather simple example to demonstrate the abilities more clearly.

The first step is to generate a basic sentence from the example grammar I described earlier in this
paper:

some man took some table and some beautiful toy liked the ball

Then a randomization function is applied on every word:
sommsemeee man toook soooome tabbble and esmssommmmeme beauatbifeuul yytoy lllkkiikled tthe baall

After that each word is being looked up in Nam Shub's built-in spell checker dictionary and a
randomly selected word out of a list of possible corrections is substituted:

sommelier's ma took toothsome dabble ans commemoration's beautifications toy's lllkkiikled the baa ll

The final step is then an automatic conversion of the generated “sentence” into commands for the
turtle graphics module i described earlier. This is done with the help of Lindenmayer substitution
systems:

#abcommfbff+b+b<---'abc mf uvoo++ff> uvoouv-b<abcomf ++rrf+r+rbf fklmabc -lommfmo+b+b<---fuvfoklm'abc +rffffffuvf.f-
lfuvfoklmabc uvoklmnopq'abc bbb++ff>++ff>ff++ff>bf++rr uv-b<f +rff bb#f+r-lomm.+r..+f++++++++r+f++++++++r<---'f+r-l m.
ffffdefoo+f++++++++f+++++++..> ffffdefooffffdef-+r<f+r-lom. +f++++++++f++++++++b+b<---+b+b<---.+f++++++++b+b<---
+f++++++++b+b<---+r. .++ff>bmf+r-l -bomm.mo+f++++++++r+f++++++++r<---.ffffdef.o++ff>bm'f+r-l +f++++++++b+b<---......
ffffdef...-b.ffffdef.o++ff>bmf+r-l ffffdefo++ff>bmklmoggqrq'f+r-l
[...]

These commands result in this image:

8 for a discussion of Turing-completeness and the Church–Turing thesis see [24]

The elapsed time from the first step to the finished image would most likely be under a minute
provided that the user knows what to do. But the overall goal in this case is not efficiency but rather
a new kind of work flow like in electronic music or graphic design where aesthetic decisions are
often taken on the basis of a trial-and-error approach. So to change the appearance or the actual text
it would only be necessary to make a few adjustments and to reapply the operations. In my opinion
this could free the poet from pen and paper9 and supply her with a digital tool like those already
available for music and visual arts.

Live Performance
The real-time features of Nam Shub enable the user not only to create text based art more elegantly
but also to use the program in a live performance context. Unlike other tools that could be used for
electronic poetry shows my program is no sophisticated text playing or reading device but could be
used as an instrument for literary improvisation.

A typical performance piece could be staged following a script like this:

Silence. On the projected screen visible both for the performer and the audience appear a couple of
words or sentences. The performer starts to speak improvised sentences associated with those on
screen into a microphone. These words are analysed by Nam Shub's speech recognition module and
linguistic functions. The results are then displayed and grouped by context data extracted from the
common-sense knowledge base ConceptNet to mirror the human association process and to guide
the performance into possible new directions. So the show leads through an ever evolving
associative textual space directed both by the human performer as well as the machine and thus
creates real-time man-machine artwork.

Again my project here is aimed at freeing the electronic literature from traditional strictness and
immobility or as Jean-Pierre Balpe puts it:

“Generative literature tries to be on the side of the effusive superficiality of show. It wants
to reconcile the literary activity with that of play and game: to separate literature from the
sphere of reverential and deadly seriousness in which the whole classical tradition locks it.
Not merely about a particular text, it questions itself infinitely about the aesthetic working
of the human spirit.” [25]

Poetry Installation
Nam Shub could also be used in an arts installation in a gallery running on a computer with an

9 in my view contemporary text editing software is only an enhancement of the typewriter which itself is only a
mechanized pen

attached video projector and displaying generated text, outputting speech and reacting to input from
the visitors.
This could could be a very complex setting incorporating sophisticated algorithmic procedures but
could also be as simple as the following10: a simple sentence is spoken with the program's text to
speech module and simultaneously recorded and processed by Nam Shub's speech recognition. The
recognized words are then again spoken and likewise recorded. The resulting textual feedback loop
becomes more and more flawed due to the inherent limitations of both the speech output and
recognition. As the produced text aberrates increasingly from the initial preset sentence the
computer system reveals its preprogrammed bias and resonances. The following is an excerpt of a
first test run:

[...]
presume why my name is Levy and I have is a line wages and I said I'm 99 that is a lot of these and I
and my my name is Levy and I have is in line with Dan Eisen I
have is a lot of these and I have made money and I have is in line
My native land I had in mind the end
enemies and I am money and I have is
My mainland I am mime
enemies and I am money and I have is my mainland I
Enemies and I I and I had in mind mainland I I
enemies and I am money and I have is my name in Miami's N. Y. I. N. I. M. I. N. I. I.
enemies and I am and I have is my name Miami's N. Y. I. N. I. I. A's N. I. I. M. I. name Miami's N. Y. I. N. I. I.
enemies and I am in Miami's mime Miami's A. I. M. A. I. N. nineteen Miami's N. Y. I. N. I. I.
enemies and I am Miami's
Miami is a I N. A. I. N. nineteen Miami's NY I I
enemies and I am Miami's Miami is a I N. A. I. N. nineteen Miami's A. I. N. F. I. Miami's Miami is a I N. A. I. N. nineteen Miami's NY I
enemies and I Miami's Miami is a I N. A. I. S. Miami's A. I. time I am Miami is if I may I nineteen nineties and I
enemies and I Miami's Miami is that I may I ask my is a lifetime I my is assigned AI nineteen nineties and I
am a genuine Miami's Miami is that I may I ask my is a lifetime line reasons I I'm nineteen nineties and I
can examine Miami's Miami is that I may I ask my is alive timeline raises I'm nineteen nineties and I
can say in Miami's Miami is that I may I S. I. is alive timeline raises I'm nineteen nineties and I
should say bias Miami is that I may I S. I. is alive timeline raises I'm nineteen nineties and I
should say my is Miami is that I may I S. I. is alive timeline raises nineteen nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nineteen nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nineteen nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nineteen nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nineteen nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nineteen nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nine nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nine nineties and I
should say money is Miami is that I may I S. I. is alive timeline raises nine nineties and I
have to say is that any headway I as I have finally reunited and I
[...]

Technical Information
The program is being developed with the programming language Python and is using the multi-
platform graphical toolkit wxPython [26] [27] and the real-time graphics library pyGame [28].

I plan to release a first public downloadable alpha-version for the Windows XP in 2007 under an
open-source licence. Versions for Mac and Linux should be available later in 2007 or at the
beginning of 2008.

The Name
According to Neal Stephenson's novel Snow Crash, the ancient Sumerian Nam Shub of Enki was a
neurolinguistic hack aimed against the standardization and unification of society and human life
through verbal rules and laws. Therefore the program Nam Shub can be seen as a computer
linguistic hack targeted against a global unified culture and empire.

References

10 I conceived this installation under the title “selbstgespräch” (soliloquy)

1: The Pure Data Portal, http://puredata.info/
2: Mark V. Shaney wikipedia article, http://en.wikipedia.org/wiki/Mark_V._Shaney
3: Andrew C. Bulhak, Dada Engine, http://dev.null.org/dadaengine/
4: Andrew C. Bulhak, Postmodernism Generator, http://www.elsewhere.org/pomo
5: Ray Kurzweil, Cybernetic Poet, http://www.kurzweilcyberart.com
6: Cut 'n' Mix ULTRA, http://esoteric-sensationalism.com/
7: Taylor Berg, Darwin, http://www.loudthings.org/
8: Maurice Benayoun, Labylogue, http://www.benayoun.com/Labylogue.html
9: Estudio Paco Bascuñán and Inklude, RoboType, http://www.robotype.net/
10: Amorvita, Poem Generator, http://vita.uwnet.nl/poem/poem.html
11: Eugenio Tiselli, MIDIPoet, http://www.motorhueso.net/midipeng/
12: Cycling '74, Max/MSP, http://www.cycling74.com/products/maxmsp
13: ChucK : Strongly-timed,Concurrent, and On-the-flyAudio Programming Language, ,
http://chuck.cs.princeton.edu/
14: L-systems wikipedia article, http://en.wikipedia.org/wiki/L-system
15: Stephen Wolfram, A New Kind of Science, 2002
16: Steven Bird, Edward Loper et al., Natural Language Toolkit, http://nltk.sourceforge.net/
17: Hugo Liu, MontyLingua, http://web.media.mit.edu/~hugo/montylingua/
18: Christiane Fellbaum, Wordnet: An Electronic Lexical Database, 1998
19: Python web site, 2003, http://www.python.org
20: Hugo Liu, Push Singh,Iian Eslick, The ConceptNet Project, ,
http://web.media.mit.edu/~hugo/conceptnet/
21: Alan W. Black, Kevin A. Lenzo, Flite: a small, fast run time synthesis engine,
http://www.speech.cs.cmu.edu/flite/
22: Logo Foundation, A Logo Primer or What's with the Turtles?, 2000,
http://el.media.mit.edu/logo-foundation/logo/turtl
23: Arduino, http://www.arduino.cc/
24: Martin Davis (Editor), The Undecidable: Basic Papers on Undecidable Propositions, ..., 2004
25: Jean-Pierre Balpe, Principles and Processes of Generative Literature, http://www.dichtung-
digital.com/2005/1/Balpe/
26: , wxPython web sit, , http://www.wxpython.org
27: Noel Rappin, Robin Dunn, wxPython in Action, 2006
28: pygame - Python game development, , http://www.pygame.org/

	Nam Shub – A Text Creation and Performance Environment
	Abstract
	Introduction
	Precursors and Influences
	Text Generators
	Visual Poetry Software
	Poetry Performance Software

	Generation and Modification
	Micro Structure or Character Level
	Macro Level
	Markov Chains
	Lindenmayer Systems
	Cellular Automata
	Grammars

	Meta Level
	Program structure
	Meaning

	Audiovisual Output
	Speech output
	Text Graphics

	Performance
	Input
	Live Coding

	Possible Applications
	Poetry Generation
	Live Performance
	Poetry Installation

	Technical Information
	The Name

