£ PCI Cryptographic Coprocessor

CCA Basic Services Reference and Guide
Release 2.52
IBM iSeries PCICC Feature

CCA Release 2.52

CCA Release 2.52

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page Xiii.

Eleventh Edition (April, 2004)

This manual describes the IBM Common Cryptographic Architecture (CCA) Basic Services API, Release 2.52 as revised in April
2004, implemented for the IBM eServer iSeries PCI Cryptographic Coprocessor hardware feature (#4801) and OS/400 Option 35,
CCA CSP. This Basic Services manual replaces the Release 2.50 and 2.51 manuals. This manual also includes corrections to the
Release 2.41 edition which supports:

e The IBM 4758 PCI Cryptographic Coprocessor, Models 002 and 023, used with Intel-architecture personal computers and
servers, and Windows 2000.
¢ IBM eServer pSeries (RS/6000) PCI Cryptographic Coprocessor features #4958 and #4963, and IBM AlX.

Note: Support for Windows/NT, Windows/NT Server, and OS/2 is no longer available.

IBM does not stock publications at the address given below. This and other publications related to the IBM 4758 Coprocessor can
be obtained in PDF format from the Library page at http://www.ibm.com/security/cryptocards.

Readers’ comments can be communicated to IBM by using the Comments and Questions form located on the product Web site at
http://www.ibm.com/security/cryptocards, or by sending a letter to:

IBM Corporation

Department VM9A, MG81/204-3
Security Solutions and Technology
8501 IBM Drive

Charlotte, NC 28262-8563 USA

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1997, 2004. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

CCA Release 2.52

Contents

Notices Xiii
Trademarks Xiii
About This Publication XV
Revision History XV
Organization XXi
Related Publications XXii
Cryptography Publications xXiii
Chapter 1. Introduction to Programming for the IBMCCA 1-1
What CCA Services Are Available with the IBM 4758 1-1
An Overview of the CCA Environment 1-2
How Application Programs Obtain Service 1-6
Overlapped Processing 1-7
Host-side Key Caching 1-7

The Security API, Programming Fundamentals 1-8
Verbs, Variables, and Parameters 1-8
Commonly Encountered Parameters 1-11
Parameters Common to All Verbs 1-11
Rule_Array and Other Keyword Parameters 1-12

Key Tokens, Key Labels, and Key Ildentifiers 1-12

How the Verbs Are Organized in the Remainder of the Book 1-13
Chapter 2. CCA Node-Management and Access-Control 2-1
CCA Access-Control 2-2
Understanding Access Control 2-2
Role-Based Access Control 2-2
Understanding Roles 2-3
Understanding Profiles 2-4
Initializing and Managing the Access-Control System 2-5
Access-Control Management and Initialization Verbs 2-5
Permitting Changes to the Configuration 2-5
Configuration and Greenwich Mean Time (GMT) 2-6
Logging On and Logging Off 2-7
Use of Logon Context Information 2-8
Protecting Your Transaction Information 2-9
Controlling the Cryptographic Facility 2-9
Multi-Coprocessor Capability 2-10
Multi-Coprocessor CCA Host Implementation 2-11
0S/400 Multi-Coprocessor Support 2-11

AlX; Windows and OS/2 Multi-Coprocessor Support 2-11
Understanding and Managing Master Keys 2-12
Symmetric and Asymmetric Master-Keys 2-13
Establishing Master Keys 2-13
Master-Key Considerations with Multiple CCA Coprocessors 2-17
Access_Control_lnitialization (CSUAACI) 2-21
Access_Control_Maintenance (CSUAACM) 2-24
Cryptographic_Facility_Control (CSUACFC) 2-30
Cryptographic_Facility_Query (CSUACFQ) 2-34
Cryptographic_Resource_Allocate (CSUACRA) 2-44

© Copyright IBM Corp. 1997, 2004 iii

iv

CCA Release 2.52

Cryptographic_Resource_Deallocate (CSUACRD) 2-46
Key_Storage_Designate (CSUAKSD) 2-48
Key_Storage_lInitialization (CSNBKSI) 2-50
Logon_Control (CSUALCT) 2-52
Master_Key_Distribution (CSUAMKD) 2-55
Master_Key_Process (CSNBMKP) 2-59
Random_Number_Tests (CSUARNT) 2-64
Chapter 3. RSA Key-Management 3-1
RSA Key-Management 3-1
Key Generation 3-2
Key Import 3-4
Reenciphering a Private Key Under an Updated Master-Key 3-5
Using the PKA Keys 3-5
Using the Private Key at Multiple Nodes 3-6
Extracting a PublicKey 3-6
Registering and Retaining a Public Key 3-6
PKA_Key_Generate (CSNDPKG) 3-7
PKA_Key Import (CSNDPKI) 3-11
PKA_Key Token_Build (CSNDPKB) 3-14
PKA_Key_Token_Change (CSNDKTC) 3-22
PKA_Public_Key_Extract (CSNDPKX) 3-24
PKA_Public_Key_Hash_Register (CSNDPKH) 3-26
PKA_Public_Key_Register (CSNDPKR) 3-28
Chapter 4. Hashing and Digital Signatures 4-1
Hashing 4-1
Digital Signatures 4-2
Digital_Signature_Generate (CSNDDSG) 4-4
Digital_Signature_Verify (CSNDDSV) 4-7
MDC_Generate (CSNBMDG) 4-10
One_Way_Hash (CSNBOWH) 4-13
Chapter 5. DES Key-Management 5-1
Understanding CCA DES Key-Management 5-2
Control Vectors 5-4
Checking a Control Vector Before Processing a Cryptographic Command . 5-5
Key Types e 5-5
Key-Usage Restrictions 5-6
Key Tokens, Key Labels, and Key Identifiers 5-12
Key Tokens 5-12
Key Labels 5-14
Key Identifiers 5-14
Using the Key-Processing and Key-Storage Verbs 5-15
Installing and Verifying Keys 5-15
Generating Keys 5-16
Exporting and Importing Keys, Symmetric Techniques 5-18
Exporting and Importing Keys, Asymmetric Techniques 5-19
Diversifying Keys 5-19
Storing Keys in Key Storage 5-20
Security Precautions 5-21
Clear_Key_Import (CSNBCKI), 5-22
Control_Vector_Generate (CSNBCVG) 5-24
Control_Vector_Translate (CSNBCVT) 5-26

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Cryptographic_Variable_Encipher (CSNBCVE) 5-29
Data_Key_Export (CSNBDKX) 5-31
Data_Key_Import (CSNBDKM) 5-33
Diversified_Key_Generate (CSNBDKG) 5-35
Key_Export (CSNBKEX) 5-42
Key_Generate (CSNBKGN) 5-44
Key-Type Specifications 5-47
Key-Length Specification 5-49
Key_Import (CSNBKIM) 5-51
Key_Part_Import (CSNBKPI) 5-54
Key_Test (CSNBKYT) e 5-58
Key_Token_Build (CSNBKTB) 5-61
Key_Token_Change (CSNBKTC) 5-64
Key_Token_Parse (CSNBKTP) 5-66
Key_Translate (CSNBKTR) 5-69
Multiple_Clear_Key_Import (CSNBCKM) 5-71
PKA_Decrypt (CSNDPKD) 5-73
PKA_Encrypt (CSNDPKE) 5-75
PKA_Symmetric_Key_Export (CSNDSYX) 5-78
PKA_Symmetric_Key_Generate (CSNDSYG) 5-81
PKA_Symmetric_Key_Import (CSNDSYI) 5-86
Prohibit_Export (CSNBPEX) 5-90
Random_Number_Generate (CSNBRNG) 5-91
Chapter 6. Data Confidentiality and Data Integrity 6-1
Encryption and Message Authentication Codes 6-1
Ensuring Data Confidentiality 6-1
Ensuring Data Integrity 6-3
MACing Segmented Data 6-3
Decipher (CSNBDEC) 6-5
Encipher (CSNBENC) 6-8
MAC_Generate (CSNBMGN) 6-11
MAC_Verify (CSNBMVR) 6-14
Chapter 7. Key-Storage Verbs 7-1
Key Labels and Key-Storage Management 7-1
Key-Label Content 7-2
DES_Key_Record_Create (CSNBKRC) 7-4
DES_Key_Record_Delete (CSNBKRD) 7-5
DES_Key_Record_List (CSNBKRL) 7-7
DES_Key_Record_Read (CSNBKRR) 7-9
DES_Key_Record_Write (CSNBKRW) 7-10
PKA_Key_Record_Create (CSNDKRC) 7-11
PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA_Key_Record_List (CSNDKRL) 7-15
PKA_Key_Record_Read (CSNDKRR) 7-17
PKA_Key_Record_Write (CSNDKRW) 7-19
Retained_Key_Delete (CSNDRKD) 7-21
Retained_Key_List (CSNDRKL) 7-22
Chapter 8. Financial Services SupportVerbs 8-1
Processing Financial PINs 8-2
PIN-Verb Summary 8-3
PIN-Calculation Method and PIN-Block Format Summary 8-5

Contents V

CCA Release 2.52

Providing Security for PINs 8-5
Using Specific Key Types and Key-Usage Bits to Help Ensure PIN
Security . .. 8-6
Supporting Multiple PIN-Calculation Methods 8-7
PIN-Calculation Methods 8-7
Data_Array e 8-7
Supporting Multiple PIN-Block Formats and PIN-Extraction Methods 8-9
PIN Profile 8-9
PIN-Extraction Methods 8-11
Personal Account Number (PAN) 8-12
Working With EMV Smart Cards 8-13
Clear_PIN_Encrypt (CSNBCPE) 8-14
Clear_PIN_Generate (CSNBPGN) 8-17
Clear_PIN_Generate_Alternate (CSNBCPA) 8-20
CVV_Generate (CSNBCSG) 8-26
CVV_Verify (CSNBCSV) 8-29
Encrypted_PIN_Generate (CSNBEPG) 8-32
Encrypted_PIN_Translate (CSNBPTR) 8-36
Encrypted_PIN_Verify (CSNBPVR) 8-41
PIN_Change/Unblock (CSNBPCU) 8-48
Secure_Messaging_for_Keys (CSNBSKY) 8-55
Secure_Messaging_for_PINs (CSNBSPN) 8-58
SET_Block_Compose (CSNDSBC) 8-62
SET_Block_Decompose (CSNDSBD) 8-66
Transaction_Validation (CSNBTRV) 8-70
Appendix A. Return Codes and Reason Codes A-1
Return Codes A-1
Reason Codes A-1
Return Code O A-2
Return Code 4 A-3
Return Code 8 A-4
Return Code 12 A-10
Return Code 16 A-11
Appendix B. Data Structures L. B-1
Key Tokens B-1
Master Key Verification Pattern, B-1
Token-Validation Value and Record-Validation Value B-2
Null Key-Token B-2
DES Key-Tokens B-3
Internal DES Key-Token B-3
External DES Key-Token B-5
RSA PKA Key-Tokens B-6
RSA Key-Token Sections B-7
PKA Key-Token Integrity B-8
Number Representation in PKA Key-Tokens B-8
Chaining-Vector Records B-20
Key-Storage Records B-21
Key_Record_List DataSet B-25
Access-Control Data Structures L. B-28
Role Structure B-29
Basic Structure ofa Role B-29
Aggregate Role Structure B-30

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Access-Control-Point List B-30
Default Role Contents B-31
Profile Structure B-32
Basic Structure of a Profile B-32
Aggregate Profile Structure oL B-33
Authentication Data Structure L B-33
Examples of the Data Structures B-36
Passphrase authenticationdata B-36
User Profile B-36
Aggregate Profile Structure oL B-37
Access-Control-Point List B-38

Role Data Structure B-39
Aggregate Role Data Structure B-40
Master Key Shares Data Formats B-41
Function Control Vector B-42
Appendix C. CCA Control-Vector Definitions and Key Encryption C-1
DES Control-Vector Values C-1
Key-Form Bits, ‘fff and ‘FFF* C-7
Specifying a Control-Vector-Base Value C-7
CCA Key Encryption and Decryption Processes C-12
CCA DES Key Encryption and Decryption Processes C-12
CCA RSA Private Key Encryption and Decryption Process C-12
PKA92 Key Format and Encryption Process C-14
Encrypting a Key_Encrypting Key in the NL-EPP-5 Format C-16
Changing Control Vectors C-16
Changing Control Vectors with the Pre-Exclusive-OR Technique C-16
Changing Control Vectors with the Control_Vector_Translate Verb C-20
Providing the Control Information for Testing the Control Vectors C-20
Mask Array Preparation C-20
Selecting the Key-Half Processing Mode C-23
When the Target Key-Token CV IsNull C-24
Control_Vector_Translate Example C-24
Appendix D. Algorithms and Processes D-1
Cryptographic Key Verification Techniques D-1
Master Key Verification Algorithms, D-1
SHA-1 Based Master Key Verification Method D-1
S/390 Based Master Key Verification Method D-2
Asymmetric Master Key MDC-Based Verification Method D-2

Key Token Verification Patterns D-2
CCA DES-Key Verification Algorithm D-2
Encrypt Zeros DES Key Verification Algorithm D-3
Modification Detection Code (MDC) Calculation Methods D-3
Notation Used in Calculations D-4
MDC-1 Calculation D-4
MDC-2 Calculation D-5
MDC-4 Calculation D-5
Ciphering Methods D-5
General Data Encryption Processes D-6
Single-DES and Triple-DES for General Data D-6
ANSI X3.106 Cipher Block Chaining (CBC) Method D-7
ANSI X9.23 e D-7
Triple-DES Ciphering Algorithms D-10

Contents Vii

-+ 4+ 4+ + —

viii

CCA Release 2.52

MAC Calculation Methods D-13
RSA Key-Pair Generation D-15
Access-Control Algorithms D-16
Passphrase Verification Protocol D-16
Design Criteria D-16
Description of the Protocol D-16
Master-Key-Splitting Algorithm D-18
Formatting Hashes and Keys in Public-Key Cryptography D-19
ANSI X9.31 Hash Format D-19
PKCS #1 Formats D-19

Appendix E. Financial System Verbs Calculation Methods and Data

Formats E-1
PIN-Calculation Methods E-2
IBM 3624 PIN-Calculation Method E-3
IBM 3624 PIN Offset Calculation Method E-4
Netherlands PIN-1 Calculation Method, E-5
IBM German Bank Pool Institution PIN-Calculation Method E-6
VISA PIN Validation Value (PVV) Calculation Method E-7
Interbank PIN-Calculation Method E-8
PIN-Block Formats E-9
3624 PIN-Block Format E-9
ISO-0 PIN-Block Format E-10
ISO-1 PIN-Block Format E-11
ISO-2 PIN-Block Format E-12
UKPT Calculation Methods E-13
Deriving an ANSI X9.24 Unique-Key-Per-Transaction Key E-13
Performing the Special Encryption and Special Decryption Processes . . E-15
CvWand CVC Method E-16
VISA and EMV-Related Smart Card Formats and Processes E-17
Derivation of the Smart-Card-Specific Authentication Code E-17
Constructing the PIN-block for Transporting an EMV Smart-Card PIN . . . E-17
Derivation of the CCA TDES-XOR SessionKey E-18
Derivation of the EMV TDESEMVn Tree-Based Session-Key E-18
PIN-Block Self-encryption E-19
Appendix F. Verb List F-1
Appendix G. Access-Control-PointCodes G-1
List of Abbreviationso X-1
Glossary X-3
Index X-11

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Figures

1-1.
2-1.
2-2,
2-3.
3-1.

3-3.
3-4.

4-2.
5-1.
5-2.

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
6-1.
7-1.
7-2.
7-3.
7-4.
8-1.
8-2.
8-3.

8-4.
8-5.
8-6.
8-7.

8-8.
8-9.
8-10.
8-11.
A-1.
A-2.

© Copyright IBM Corp. 1997, 2004

CCA Security API, Access Layer, Cryptographic Engine 1-3
CCA Node, Access-Control, and Master-Key Management Verbs . . 2-1
Coprocessor-to-Coprocessor Master-Key Cloning 2-16
Cryptographic_Facility_Query Information Returned in the Rule Array 2-36
Public-Key Key-Administration Services 3-1
PKA96 Verbs with Key-Token Flow 3-2
PKA_Key_Token_Build Key-Values-Structure Contents 3-17
PKA_Key_Token_Change Rule_Array Keywords 3-22
Hashing and Digital Signature Services 4-1
MDC_Generate Rule_Array Keywords 4-11
Basic CCA DES Key-Management Verbs 5-1
Flow of Cryptographic Command Processing in a Cryptographic

Facility 5-5
Key Typesand Verb Usage 5-7
Control_Vector_Generate and Key_Token_Build CV Keyword
Combinations 5-9
Control Vector Key-Subtype and Key-Usage Keywords 5-10
Key_Token Contents 5-13
Use of Key Tokens and Key Labels 5-13
Key-Processing Verbs 5-16
Key Exporting and Importing 5-19
Control_Vector_Translate Rule_Array Keywords 5-27
Key_Type and Key_Form Keywords for One Key 5-48
Key_Type and Key_Form Keywords for a Key Pair 5-49
Key Lengths by Key Type 5-50
Key_Part_Import Rule_Array Keywords 5-56
Key_Token_Build Rule_Array Keywords 5-62
Key_Token_Change Rule_Array Keywords 5-65
Key_Token_Parse Rule_Array Keywords 5-67
Key_Token_Build Form Keywords 5-91
Data Confidentiality and Data Integrity Verbs 6-1
Key-Storage-Record Services 7-1
DES_Key_Record_Delete Rule_Array Keywords 7-5
PKA_Key_Record_Delete Rule_Array Keywords 7-13
PKA_Key_Record_Write Rule_Array Keywords 7-20
Financial Services Support Verbs 8-1
Financial PIN Verbs 8-4
PIN Verb, PIN-Calculation Method, and PIN-Block-Format Support
Summary ... 8-5
Pad-Digit Specification by PIN-Block Format 8-11
PIN-Extraction Method Keywords by PIN-Block Format 8-12

Clear_PIN_Generate_Alternate Rule_Array Keywords (First Element) 8-22
Clear_PIN_Generate_Alternate Rule_Array Keywords (Second

Element) 8-23
Encrypted_PIN_Generate Rule_Array Keywords 8-34
Encrypted_PIN_Translate Rule_Array Keywords 8-39
Encrypted_PIN_Translate Required Hardware Commands 8-40
Encrypted_PIN_Verify PIN-Extraction Method 8-44
Return Code Values A-1
Reason Codes for Return Code O A-2

iX

X

A-3.
A-4.
A-5.
A-6.
B-1.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9.
B-10.
B-11.
B-12.
B-13.
B-14.
B-15.
B-16.
B-17.

B-18.
B-19.
B-20.
B-21.
B-22.
B-23.
B-24.
B-25.
B-26.
B-27.
B-28.
B-29.
B-30.
B-31.
B-32.
B-33.
B-34.
B-35.
B-36.
B-37.
B-38.
B-39.
B-40.
B-41.
B-42.
B-43.
B-44.
B-45.
B-46.
B-47.
B-48.
B-49.

CCA Release 2.52

Reason Codes for Return Code 4 A-3
Reason Codes for Return Code 8 A-4
Reason Codes for Return Code 12 A-10
Reason Codes for Return Code 16 A-11
PKA Null Key-Token Format B-2
Internal DES Key-Token, Version 0 Format (Version 2 Software) .. B-3
Internal DES Key-Token, Version 3 Format B-3
External DES Key-Token Format, Version X'00' B-5
External DES Key-Token Format, Version X'01' B-5
Key-Token FlagByte 1 B-6
Key-Token FlagByte2 B-6
RSA Key-Token Header B-9
RSA Private Key, 1024-Bit Modulus-Exponent Format B-10
Private Key, 2048-Bit Chinese-Remainder Format B-11
RSA Private Key, 1024-Bit Modulus-Exponent Format with OPK . . B-13
RSA Private Key, Chinese-Remainder Format with OPK B-14
RSAPublicKey B-16
RSA Private-Key Name B-16
RSA Public-Key Certificate(s) Section Header B-17
RSA Public-Key Certificate(s) Public Key Subsection B-17
RSA Public-Key Certificate(s) Optional Information Subsection

Header B-18
RSA Public-Key Certificate(s) User Data TLV. B-18
RSA Public-Key Certificate(s) Environment Identifier (EID) TLV . . . B-18
RSA Public-Key Certificate(s) Serial Number TLV. B-18
RSA Public-Key Certificate(s) Signature Subsection B-19
RSA Private-Key Blinding Information B-20
Cipher, MAC_Generate, and MAC_Verify Chaining-Vector Format . B-20
Key-Storage-File Header, Record 1 (not OS/400) B-22
Key-Storage File Header, Record 2 (not OS/400) B-23
Key-Record Format in Key Storage (not 0S/400) B-23
DES Key-Record Format, OS/400 Key Storage B-24
PKA Key-Record Format, OS/400 Key Storage B-24
Key-Record-List Data Set Format (Other Than OS/400) B-25
Key-Record-List Data Set Format (OS/400 only) B-27
Role Layout B-29
Aggregate Role Structure with Header B-30
Access-Control-Point Structure B-31
Functions Permitted in Default Role B-31
Profile Layout B-32
Layout of Profile Activation and Expiration Dates B-32
Aggregate Profile Structure with Header B-33
Layout of the Authentication Data Field B-34
Authentication Data for Each Authentication Mechanism B-35
Passphrase Authentication Data Structure B-36
User Profile Data Structure B-37
Aggregate Profile Structure oL B-38
Access-Control-Point List B-38
Role Data Structure B-39
Aggregate Role Data Structure B-40
Cloning Information Token Data Structure B-41
Master Key Share TLV B-41
Cloning Information Signature TLV. B-41
FCV Distribution Structure B-42

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

D-10.
D-11.
D-12.
E-1.
E-2.

E-4.
E-5.

F-1.
G-1.

Key Classes
Key Type Default Control-Vector Values
Control-Vector-Base BitMap
Multiply-Enciphering and Multiply-Deciphering CCA Keys
PKA96 Clear DES Key Record
NL-EPP-5 Key Record Format
Exchanging a Key with a Non-Control-Vector System
Control_Vector_Translate Verb Mask_Array Processing
Control_Vector_Translate Verb Process
Versions of the MDC Calculation Method
Triple-DES Data Encryption and Decryption
Enciphering Using the CBC Method
Deciphering Using the CBC Method
Enciphering Using the ANSI X9.23 Method
Deciphering Using the ANSI X9.23 Method
Triple-DES CBC Encryption Process
Triple-DES CBC Decryption Process
EDE Algorithm
DED Process
MAC Calculation Method
Example of Logon Key Computation
Financial PIN Calculation Methods, Data Formats, Other ltems . . .
3624 PIN-Block Format
ISO-0 PIN-Block Format
ISO-1 PIN-Block Format
ISO-2 PIN-Block Format
CVV Track 2 Algorithm
Security API Verbs in Supported Environments
Supported CCA Commands

Figures

Xi

CCA Release 2.52

Xii IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectable rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

3090

AIX

Application System/400
CICS

Enterprise System/9000
eServer

ES/9000

IBM

IBM World Registry
Micro Channel
MVS/ESA

MVS/XA

0S/2

0S/400

Personal System/2
PS/2

POWERserver

RACF

System/370

S/390 G3 Enterprise Server
Systems Application Architecture
xSeries

© Copyright IBM Corp. 1997, 2004

ACF/NTAM

AIX/6000

AS/400

Enterprise System/3090
Enterprise System/9370
ES/3090

ES/9370

IBM Registry

iSeries

MVS/DFP

MVS/SP

Operating System/2
Operating System/400
Personal Security
pSeries
PS/ValuePoint
POWERstation
RS/6000

System/390

S/390 Multiprise

XGA

zSeries

xiii

CCA Release 2.52

The following terms, denoted by a double asterisk (**) in this publication, are the
trademarks of other companies:

Diebold Diebold Inc.

Docutel Docutel

MasterCard MasterCard International, Inc.

Pentium Intel Corporation

NCR National Cash Register Corporation
RSA RSA Data Security, Inc.

UNIX UNIX Systems Laboratories, Inc.

VISA VISA International Service Association
SET SET Secure Electronic Transaction LLC

XiV IBM 4758 CCA Basic Services, Release 2.52, April 2004

+ 4+ + + o+ o+ o+ + 4+

+ o+ 4+

CCA Release 2.52

About This Publication

The manual is intended for systems and applications analysts and application
programmers who will evaluate or create programs for the IBM 4758 Common
Cryptographic Architecture (CCA) support for the IBM 4758 Models 002 and 023
technology used with Windows/2000 and Windows/2000 Server on Intel-technology
personal computers and servers, with AIX on IBM eServer pSeries (RS/6000)
systems, and with IBM eServer iSeries (0S/400) Option 35, CCA CSP on OS/400
systems. Please reference the IBM eServer pSeries and iSeries Web sites for the
specific features and supported levels of software related to the IBM 4758
technology.

Release 2.52 code applies only to the IBM eServer iSeries environment. PC
servers and IBM eServer pSeries servers use Release 2.41 code. This manual
includes some corrections which apply to Releases 2.41, 2.50 and 2.51.

Users of IBM 4758 Models 002 and 023 on the OS/2 platform should refer to the
CCA Basic Services Reference And Guide Release 2.31 for the IBM 4758 Models
002 and 023 manual available on the product Web site.

Users of IBM 4758, Models 001 and 013, should refer to the CCA Basic Services
Reference And Guide Release 1.31/1.32 for the IBM 4758 Models 001 and 013
manual available on the product Web site.

Prerequisite to using this manual is familiarity with the contents of the IBM 4758
PCI Cryptographic Coprocessor General Information Manual that discusses topics
important to the understanding of the information presented in this manual:

* The IBM 4758 PCI Cryptographic Coprocessor
e An overview of cryptography

e Supported cryptographic functions

e System hardware features and software

* Organization of the relevant publications.

Revision History

Eleventh Edition, April, 2004, CCA Support Program,

Release 2.52

This revision to the February, 2004, edition of the IBM 4758 CCA Basic Services
Reference and Guide for the IBM 4758 Models 002 and 023, Release 2.52,
replaces the February, 2004, Release 2.51 edition. Incorporated changes include:

» Addition of a second set of issuer-master key parameters with revised
processing in the PIN_Change/Unblock (CSNBPCU) verb. The processing
changes are further described in “VISA and EMV-Related Smart Card Formats
and Processes” on page E-17.

e Documentation of the RESETBAT rule-array keyword in the
Cryptographic_Facility_Control verb (CSUACFC) you use to reset the indication
of a low battery. This capability was added with Release 2.41.

* In Appendix A, removal of return code 12, reason code 093.

© Copyright IBM Corp. 1997, 2004 XV

Xvi

Revision History

CCA Release 2.52

Release 2.52 is only available for the IBM eServer iSeries. This manual includes
changes for Release 2.41 and Release 2.51 users as described in the following
sections.

Tenth Edition, February 2004, CCA Support Program,

Release 2.51

This tenth edition of the IBM 4758 CCA Basic Services Reference and Guide
Release 2.51 for the IBM 4758 Models 002 and 023 technology describes the
Common Cryptographic Architecture (CCA) application programming interface (API)
that is supported by the PCI Cryptographic Coprocessor feature available with

IBM eServer iSeries and OS/400 Option 35, CCA CSP.

The manual also includes updates and corrections to the previous editions for
Release 2.50, Release 2.41 and earlier. The revision bar, as shown at the left,
marks important changes and extensions to material previously published in the
Ninth Edition of the Basic Services manual.

Release 2.51 for the IBM eServer iSeries includes these additional and modified
EMV-smart-card-related capabilities enhancing the earlier Release 2.50:

1. Addition of the tree format key-diversification system, defined in the EMV 2000
document, Annex A1.3, to the Diversified_Key_Generate and
PIN_Change/Unblock verbs.

2. The double-length issuer-master-key in the Diversified_Key_Generate and
PIN_Change/Unblock verbs must have unequal halves.

3. The issuer-master-key control-vector encoding is extended to support use of
the DALL combination in the PIN_Change/Unblock verb.

4. The key-generating key control-vector encoding is extended to support use of
DDATA, DMAC, and DMV encodings provided the control vector for the
generated key has a conforming control vector.

5. Extension of the Message Authentication Code (MAC) MAC_Generate and
MAC_Verify verbs to support EMV-required post-padding of a message.

6. Corrected the order of the parameters on the Secure_Messaging_for_PINs
verb. The PIN_encrypting_key_identifier follows the input_PIN_block
parameter.

Release 2.50 incorporated these capabilities and changes:

1. Functions in support of EMV-compatible smart-cards.

e Support of the PIN Change/Unblock function described in the VISA
Integrated Circuit Card Specification Manual, Section C.11

e Support of the key-generation function used for secure messaging
described in the VISA Integrated Circuit Card Specification Manual, Section
B.4

e Encryption of PINs and keys for inclusion in smart-card transactions with
EMV-compatible smart cards.

This support is provided through:

* A new verb, PIN_Change/Unblock (CSNBPCU), to create a PIN block to
change the PIN accepted by a smart card

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Revision History

* An extension to the Diversified_Key_Generate (CSNBDKG) verb enabling
session-key generation for secure messaging

¢ A new verb, Secure_Messaging_for_Keys (CSNBSKY), to encrypt a key
under a session key

e A new verb, Secure_Messaging_for_PINs (CSNBSPN), to encrypt a PIN
under a session key

e The next item relating to ISO 9796-2 digital signature verification.

2. An extension to the PKA_Encrypt (CSNDPKE) verb enabling verification of
digital signatures with any hash formatting method (for example, 1ISO 9796-2)
through the public-key enciphering of data in the zero-pad format.

Ninth Edition, Revised September, 2003, CCA Support Program,
Release 2.41

This revised Release 2.41 manual, dated September, 2003, contains minor editorial
changes and these corrections:

« Figure C-3 on page C-5 is changed to note that a SECMSG key is always
double length (“fff” bits changed to “FFF”).

e Figure C-3 on page C-5 is changed to reflect that key-encrypting keys, bits
35-37, must be B'000'. The text in item 2 of section “Specifying a
Control-Vector-Base Value” on page C-7 which previously described these bits
has been removed. Testing for these control vector bits has not been
implemented.

e The padding for a Current Key Serial Number must be four bytes of X'00'
rather than four space characters as previously stated in “Current Key Serial
Number” on page 8-11.

The revision bar, as shown at the left, marks the important changes.

Ninth Edition, Revised August 2002, CCA Support Program,
Release 2.41

This revised Release 2.41 manual incorporates corrected information about the
name for a Retained RSA key and other minor editorial changes.

Eighth Edition, Revised, CCA Support Program, Release 2.41
This revised Release 2.41 manual incorporates additional information concerning
access controls (see “CCA Access-Control” on page 2-2) and other minor editorial
changes.

Eighth Edition, CCA Support Program, Release 2.41
The major items changed, extended, or added in Release 2.41 include:

e The Key_Export, Key_Import, Data_Key_Export, and Data_Key_Import now
require the exporter or importer key to have unique key-halves when importing
or exporting a key with unequal halves. You can regress to less-secure
operation which does not enforce the restriction by activating an additional
access control command point.

e The Key_Part_Import verb has been modified in two ways:

— For double-length keys, unless a new access-control point is enabled in the
governing role, the previously accumulated key-value and the resulting
key-value must both have equal (“replicated”) key-halves or both have

About This Publication ~ XVii

Revision History

CCA Release 2.52

unequal key-halves. This test is ignored if the previously accumulated key
has all key bits other than parity bits set to zero. This increases security by
guaranteeing that the strength of the key is not modified when combining
the new key part.

“Replicated key-half” means that the first part (half) and the last half of a
double-length DES key have equal values and thus performs as though the
key were single length.

— Additional keywords are added to the rule_array that permit enforcing
separation between individuals who can update the accumulated key and
one who can make the key operational (that is, switch off the control-vector
key-part bit). Note that the Cryptographic Node Management utility is not
updated to take advantage of this extension.

The Encrypted_PIN_Generate verb (CSNBEPG) has be extended to include
support of the 3624 PIN-calculation method through use of the IBM-PIN
keyword.

The Encrypted_PIN_Verify verb (CSNBPVR) has be extended to optionally
enforce ensuring that PINs are four digits in length when using the VISA-PVV
calculation method through the use of the VISAPVV4 keyword.

Host-side key-caching, which has been performed since Release 2.10, can be
switched off using an environment variable. This can be important where a key
can be updated by one process, and used by one or more other concurrent
processes. See “Host-side Key Caching” on page 1-7.

Fixes have been applied to the Diversified_Key_Generate,
Encrypted_PIN_Translate and Encrypted_PIN_Verify verbs. The control vector
checking is corrected to properly account for non-default control-vector values.
The Encrypted_PIN_Translate verb now returns reason code 154 instead of 43.

In Windows NT and 2000 environments, the code is repaired to permit
multi-threaded support of multiple Coprocessors.

New drivers are supplied for AIX which support 32-bit and 64-bit environments.

The Cryptographic Node Management utility (CNM) is modified to prohibit use
of key lengths greater than 1024-bits when performing master-key cloning. You
can create an application to to clone keys having any of the CSS, CSR, and
SA keys longer than 1024-bits. See “Establishing Master Keys” on page 2-13.

The PKA_Key_Token_Change verb now returns return code 0 and reason code
0 if you request to update a key token that contains only a public key. A key
token containing only a public key is legitimate, but the
PKA_Key_Token_Change verb will have no effect on such a key token. The
verb used to return reason code 8 if the token only contained public-key
information.

The command names listed in this book, in the IBM 4758 PCI Cryptographic
Coprocessor CCA Support Program Installation Manual, and in the
Cryptographic Node Management utility have been made the same.

The Key_Token_Change and DES_Key_Record_Create verbs now work
correctly with master keys having 3 unique parts (the CCA master keys are
triple length).

The diagnostic trace facility has been removed from the “SECY”
DLL/shared-library. If tracing is required in the future for diagnostic purposes,
IBM can supply tracing code upon customer agreement to install such code.

XViil I1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Revision History

Seventh Edition, CCA Support Program, Release 2.40

The seventh edition of the IBM 4758 CCA Basic Services Reference and Guide
Version 2.40 for the IBM 4758 Models 002 and 023 technology and describes the
Common Cryptographic Architecture (CCA) application programming interface (API)
that is supported by the CCA Support Program, Release 2.40, for the IBM PCI
Cryptographic Coprocessor technology.

Important changes and extensions to material previously published in the Basic
Services manual:

¢ Release 2.40.

The major items changed, extended, or added in Release 2.40 include:

e “Overlapped Processing” on page 1-7 describes restrictions on the number of
concurrent calls to the CCA API. This is a publication-only change to describe
the existing implementation.

e The timer function incorporated in the CP/Q++ control program employed by
the CCA implementation is upgraded to keep proper time to the accuracy of the
Coprocessor's electronics.

» Various performance enhancements have been incorporated in both the
CP/Q++ control program and CCA code resulting in up to a 30% throughput
change (especially for the PIN verbs).

e The IBM 4758 Coprocessor technology has always generated RSA CRT keys
with the key-components p>q. Beginning with Release 2.40, imported keys
having g>p will also be usable, but with a significant performance penalty since
the inverse of U is calculated each time such a key is encountered.

¢ ANSI X9.24 Unique-Key-Per-Transaction support is added including the UKPT
control vector bit on KEYGENKY key types and extensions to the
Encrypted_PIN_Translate and Encrypted_PIN_Verify verbs. Also, a number of
editorial changes are incorporated in Chapter 8, “Financial Services Support
Verbs.”

e The PKA_Symmetric_Key_Export, PKA_Symmetric_Key_Generate, and
PKA_Symmetric_Key_Import verbs are updated to include support of the
“OAEP” key-wrapping technique as specified in the RSA PKCS#1-v2.0
specification.

e The action associated with the derivation-counter in control vector bits 12-14 in
the Diversified_Key_Generate verb when using the TDES-ENC and TDES-DEC
keywords is described on page 5-37.

e Weak-key checking in the Master_Key_Process verb is corrected. Note that
obtaining a weak key from a random process is an incredibly rare event.

e The Key_Test verb is updated to correctly process the ENC-ZERO method in
all cases.

e The RSA key token format descriptions have updated and corrected
information, see “RSA PKA Key-Tokens” on page B-6. The blinding
information fields are removed from the description of private key section types
X'06' and X'08'. This information is not required since blinding is not used
due to the electronic design of the IBM 4758 Models 002 and 023
Coprocessors.

About This Publication XIX

Revision History

CCA Release 2.52

e Control vector user-definition bits 4 and 5 are reserved for use by User Defined
Extension code (UDX) and are not tested or set by the standard CCA product.
Bit 61 will prevent the standard CCA implementation from actively using a key,
however, a key with this control vector can be generated, exported, and
imported. See C-11.

e Corrected checking of the old-DES-master-key when updating master keys.

e Corrected the Transaction_Validation verb when encountering lower-case rule
array keywords.

e Corrected initialization of CCA within the Coprocessor so that in a
multi-Coprocessor installation the host system will only attempt to access
CCA-initialized Coprocessors.

e Corrected the processing of a version 0 external private key token.

e Corrected the Encrypted_PIN_Translate PIN extraction process to use the
input-PIN-profile specified extraction method (rather than a method specified in
the output profile).

e Corrected the PKA_Symmetric_Key_Import verb when processing
double-length keys using the ZERO-PAD option.

Sixth Edition, CCA Support Program, Release 2.30/2.31

This is the sixth edition of the IBM 4758 CCA Basic Services Reference and Guide
Version 2.31 for the IBM 4758 Models 002 and 023 technology and describes the
Common Cryptographic Architecture (CCA) application programming interface (API)
that is supported by the CCA Support Program, Release 2.30/2.31, for the IBM PCI
Cryptographic Coprocessor technology.

There are no major items changed, extended, or added in Release 2.31.

Fifth Edition, CCA Support Program, Release 2.30

The fifth edition of the IBM 4758 CCA Basic Services Reference and Guide Version
2.30 for the IBM 4758 Models 002 and 023 technology and describes the Common
Cryptographic Architecture (CCA) application programming interface (API) that is
supported by the CCA Support Program, Release 2.30, for the IBM PCI
Cryptographic Coprocessor technology.

These items have been changed, extended, or added in Release 2.30:
1. Formal support for AIX and Windows 2000

2. Under application programming control, multiple Coprocessors can be used to
implement the CCA. The implementation extends the function previously
available on the IBM OS/400 platform. See the discussion and these verbs:

e “Multi-Coprocessor Capability” on page 2-10
* Cryptographic_Resource_Allocate (CSUACRA, page 2-44)
e Cryptographic_Resource_Deallocate (CSUACRD, page 2-46).

Note: IBM has limited objectives for the support provided in Release 2.30.
The approach to multiple-Coprocessor support may be revised in a subsequent
release, possibly with changes to the API provided in the current release.

3. Added verb Random_Number_Tests (CSUARNT, page 2-46) so that you can
test the random number generator and to cause the Coprocessor to run the
FIPS-mandated known-answer tests.

XX IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Organization

. Extended these verbs with ANSI X9.31 capabilities:

 Digital_Signature_Generate (CSNDDSG, page 4-4)
 Digital_Signature_Verify (CSNDDSV, page 4-7).

. Added support of the RIPEMD160 algorithm. See verb One_Way_Hash

(CSNBOWH, page 4-13).

Also modified the verb to employ the Coprocessor's SHA-1 engine when
calculating the SHA-1 hash for longer text strings.

. Added support of the IBM DES-based MDC-2 and MDC-4 hashing processes.

See the MDC_Generate (CSNBMDG, page 4-10) verb.

. Added additional diversified key support and supporting key types. See verb

Diversified_Key_Generate (CSNBDKG, page 5-35), and the related descriptions
of key types and control vectors at “Key-Usage Restrictions” on page 5-6 and
Appendix C, “CCA Control-Vector Definitions and Key Encryption.”

Also extended these verbs to support the additional DKYGENKY and SECMSG
key types:

e Control_Vector_Generate (CSNBCVG, page 5-24)
e Key_Token_Build (CSNBKTB, page 5-61)
e Key_Token_Parse (CSNBKTP, page 5-66).

. Added support for generating and validating the American Express card

security codes (CSC) with the Transaction_Validation (CSNBTRV, page 8-70)
verb.

This manual includes:

Chapter 1, “Introduction to Programming for the IBM CCA” presents an
introduction to programming for the CCA application programming interface and
products.

Chapter 2, “CCA Node-Management and Access-Control” provides a basic
explanation of the access-control system implemented within the hardware.
The chapter also explains the master-key concept and administration, and
introduces CCA DES key-management.

Chapter 3, “RSA Key-Management” explains how to generate and distribute
RSA keys between CCA nodes and with other RSA implementations.

Chapter 4, “Hashing and Digital Signatures” explains how to protect and
confirm the integrity of data using data hashing and digital signatures.

Chapter 5, “DES Key-Management” explains basic DES key-management
services available with CCA.

Chapter 6, “Data Confidentiality and Data Integrity” explains how to encipher
data using DES and how to verify the integrity of data using the DES-based
Message Authentication Code (MAC) process. The ciphering and MACing
services are described.

Chapter 7, “Key-Storage Verbs” explains how to use key labels and how to
employ key storage.

Chapter 8, “Financial Services Support Verbs” explains services for the
cryptographic portions of the Secure Electronic Transaction (SET) protocol and
PIN-processing services.

About This Publication ~ XXi

CCA Release 2.52

These appendices are included:

e Appendix A, “Return Codes and Reason Codes” describes the return codes
and reason codes issued by the Coprocessor.

e Appendix B, “Data Structures” describes the various data structures for key
token, chaining-vector records, key-storage records, and the key-record-list
data set.

e Appendix C, “CCA Control-Vector Definitions and Key Encryption” describes
the control-vector bits and provides rules for the construction of a control
vector.

e Appendix D, “Algorithms and Processes” describes in further detail the
algorithms and processes mentioned in this book.

e Appendix E, “Financial System Verbs Calculation Methods and Data Formats”
describes processes and formats implemented by the PIN-processing support.

Related Publications

In addition to the manuals listed below, you may wish to refer to other CCA product
publications which may be of use with applications and systems you might develop
for use with the IBM 4758 product. While there is substantial commonality in the
API supported by the CCA products, and while this manual seeks to guide you to a
common subset supported by all CCA products, other individual product
publications may provide further insight into potential issues of compatibility.

IBM 4758 PCI Cryptographic Coprocessor All of the IBM 4758-related
publications can be obtained from the Library page that you can reach
from the IBM 4758 home page at:
http://www.ibm.com/security/cryptocards.

IBM 4758 PCI Cryptographic Coprocessor General Information Manual
The General Information manual is suggested reading prior to reading
this manual.

IBM 4758 PCI Cryptographic Coprocessor CCA Support Program Guide
Describes the installation of the CCA Support Program and the
operation of the Cryptographic Node Management utility.

IBM 4758 PCI Cryptographic Coprocessor Installation Manual
Describes the physical installation of the IBM 4758 and the
battery-changing procedure.

Building a High-Performance Programmable, Secure Coprocessor
A research paper describing the security aspects and code loading
controls of the IBM 4758.

Custom Programming for the IBM 4758 The Library portion of the IBM 4758 Web
site also includes programming information for creating applications that
perform within the IBM 4758. See the reference to Custom
Programming under the Publications heading. The IBM 4758 Web site
is located at http://www.ibm.com/security/cryptocards.

IBM Transaction Security System Products The product publications for the IBM
4753, IBM 4754, IBM 4755, and the IBM Personal Security™ card can
also be found under Publications on the IBM 4758 Library Web page;
start at http://www.ibm.com/security/cryptocards.

XXii IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

IBM S/390 Integrated Cryptography Hardware and Software These manuals

provide a starting point for additional information:
e GC23-3972, OS/390 V2R4.0 ICSF Overview
e SC23-3976, OS/390 ICSF Programming Guide.

Cryptography Publications

The following publications describe cryptographic standards, research, and
practices relevant to the Coprocessor:

» Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition, Bruce Schneier, John Wiley & Sons, Inc. ISBN 0-471-12845-7 or ISBN

0-471-11709-9
e IBM Systems Journal Volume 30 Number 2, 1991, G321-0103
e |IBM Systems Journal Volume 32 Number 3, 1993, G321-5521

e |IBM Journal of Research and Development Volume 38 Number 2, 1994,
G322-0191

e USA Federal Information Processing Standard (FIPS):
— Data Encryption Standard, 46-1-1988
— Secure Hash Algorithm, 180-1, May 31, 1994
— Cryptographic Module Security, 140-1.

e PKCS #1&v2.0: RSA Cryptography Standard, RSA Laboratories, October 1,

1998.
Obtain from http://www.rsasecurity.com/rsalabs/pkcs.

e ISO 9796 Digital Signal Standard
 Internet Engineering Taskforce RFC 1321, April 1992, MD5

e Secure Electronic Transaction™ Protocol Version 1.0, May 31, 1997.

About This Publication

xXiii

CCA Release 2.52

XXiV IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Chapter 1. Introduction to Programming for the IBM CCA

This chapter introduces you to the IBM Common Cryptographic Architecture (CCA)
application programming interface (APIl). This chapter explains some basic
concepts you use to obtain cryptographic and other services from the PCI
Cryptographic Coprocessor and its CCA Support Program feature. Before
continuing, please review the “About This Publication” on page xv and first become
familiar with prerequisite information as described in that section.

In this chapter you can read about:

e What CCA services are available with the IBM 4758

e An overview of the CCA environment

e The Security API, programming fundamentals

e How the verbs are organized in the remainder of the book.

What CCA Services Are Available with the IBM 4758

CCA products provide a variety of cryptographic processes and data-security
techniques. Your application program can call verbs (services) to perform these
types of functions:

e Encrypt and decrypt information, generally using the DES algorithm in the
cipher block chaining (CBC) mode to enable data confidentiality

e Hash data to obtain a digest, or process the data to obtain a message
authentication code (MAC), that is useful in demonstrating data integrity

e Form and validate digital signatures to demonstrate both data integrity and
non-repudiation

e Generate, encrypt, translate, and verify finance industry personal identification
numbers (PINs) and transaction validation messages with a comprehensive set
of PIN-processing services

e Manage the various keys necessary to perform the above operations. CCA is
especially strong and versatile in this area. Inadequate key-management
techniques are a major source of weakness in many other cryptographic
implementations.

» Administrative services for controlling the initialization and operation of the CCA
node.

This book describes the many available services in the following chapters. The
services are grouped by topic and within a chapter are listed in alphabetical order
by name. Each chapter opens with an introduction to the services found in that
chapter.

The remainder of this chapter provides an overview of the structure of a CCA
cryptographic node and introduces some important concepts and terms.

© Copyright IBM Corp. 1997, 2004 1-1

CCA Release 2.52

An Overview of the CCA Environment

Figure 1-1 on page 1-3 provides a conceptual framework for positioning the CCA
Security API. Application programs make procedure calls to the API to obtain
cryptographic and related I/O services. The CCA API is designed so that a call can
be issued from essentially any high-level programming language. The call, or
request, is forwarded to the cryptographic-services access layer and receives a
synchronous response. That is, your application program loses control until the
access layer returns a response at the conclusion of processing your request.

The products that implement the CCA API consist of both hardware and software
components. The software consists of application development support and
runtime software components.

* The application development support software primarily consists of language
bindings that can be included in new applications to assist in accessing
services available at the API. Language bindings are provided for the C
programming language. The OS/400 Option 35, CCA CSP feature also
provides language bindings for COBOL, RPG, and CL."

e The runtime software can be divided into the following categories:

— Service-requesting programs, including utility programs and application
programs

— An “agent” function that is logically part of the calling application program or
utility

— An environment-dependent request routing function
— The server environment that gives access to the cryptographic engine.

Generally, the cryptographic engine is implemented in a hardware device that
includes a general-purpose processor and often also includes specialized
cryptographic electronics. These components are encapsulated in a protective
environment to enhance security.

The utility programs include support for administering the hardware access-controls,
administering DES and public-key cryptographic keys, and configuring the software
support. See the IBM 4758 PCI Cryptographic Coprocessor CCA Support Program
Installation Manual, for a description of the utility programs provided with the
Cryptographic Adapter Services licensed software.

No utility programs are available for the CCA support on the IBM eServer iSeries
platform. There are sample programs available for your consideration that
administer hardware access-control and manage DES and public-key cryptographic
keys. If you have Internet access, refer to these topics by following the OS/400 link
from the CCA support page of the product Web site,
http://www.ibm.com/security/cryptocards.

You can create application programs that use the products via the CCA API, or you
can purchase applications from IBM or other sources that use the products. This
book is the primary source of information for designing systems and application
programs that use the CCA API with the IBM 4758 Coprocessor.

1 For availability of the various OS/400 code levels, see the eServer iSeries OS/400 Web site.

1-2 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Application and Ufility Programs

[Security AP]

[. . A
Cryptographic Services
Access Layer

Directory R
SecurHy Server, DES 3
Server Directory
| Server, PKA)
~ —
Device Driver |
L) J
[A
Cryptographic Engine
L J

Figure 1-1. CCA Security API, Access Layer, Cryptographic Engine

IBM 4758 PCI Cryptographic Coprocessor: The Coprocessor provides a secure
programming and hardware environment wherein DES and RSA processes are
performed. The CCA support program enables applications to employ a set of
DES- and RSA-based cryptographic services utilizing the IBM 4758 hardware.
Such services include:

* RSA key-pair generation

 Digital signature generation and verification

e Cryptographic key wrapping and unwrapping, including the SET-standardized
“OAEP” key-wrapping process

e Data encryption and MAC generation/verification

* PIN processing for the financial services industry

e Other services, including DES key-management based on CCA's
control-vector-enforced key separation.

CCA: IBM has created the IBM Common Cryptographic Architecture (CCA) as the
basis for a consistent cryptographic product family. Implementations of this
architecture were first released in 1989, and it has been extended throughout the
years. The IBM 4758 and its CCA support program feature are a recent CCA
product offering that today implements a portion of those functions available with
older products as well as many new services such as the support of the SET™
protocol.

Chapter 1. Introduction to Programming for the IBM CCA 1-3

1-4

CCA Release 2.52

Applications employ the CCA security API to obtain services from and to manage
the operation of a cryptographic system that meets CCA architecture specifications.

Cryptographic Engine: The CCA architecture defines a cryptographic subsystem
that contains a cryptographic engine operating within a protected boundary. See
Figure 1-1 on page 1-38. The Coprocessor's tamper-resistant, tamper-responding
environment provides physical security for this boundary, and the CCA architecture
provides the concomitant logical security needed for the full protection of critical
information.

Access Control: Each CCA node has an access-control system enforced by the
hardware and protected software. This access-control system permits you to
determine whether programs and persons can use the cryptographic and
data-storage services. Although your computing environment may be considered
open, the specialized processing environment provided by the cryptographic engine
can be kept secure; selected services are provided only when logon requirements
are met. The access-control decisions are performed within the secured
environment of the cryptographic engine and cannot be subverted by rogue code
that might run on the main computing platform.

Coprocessor Certification: After quality checking a newly manufactured
Coprocessor, IBM loads and certifies the embedded software. Following the
loading of basic, authenticated software, the Coprocessor generates an RSA
key-pair and retains the private key within the cryptographic engine. The
associated public key is signed by a key securely held at the manufacturing facility,
and then the signed device key is stored within the Coprocessor. The
manufacturing facility key has itself been signed by a securely held key unique to
the IBM 4758 product line.

The private key within the Coprocessor—known as the device private key—is
retained in the Coprocessor. From this time on, the Coprocessor sets all
security-relevant keys and data items to zero if tampering is detected or if the
Coprocessor batteries are removed. This zeroization is irreversible and will
result in the permanent loss of the factory-certified device key, the device private
key, and all other data stored in battery-protected memory. Certain critical data
stored in the Coprocessor flash memory is encrypted. The key used to encrypt
such data is itself retained in the battery protected memory that is zeroized upon a
tamper detection event.

Master Key: When using the CCA architecture, working keys—including session
keys and the RSA private keys used at a node to form digital signatures or to
unwrap other keys—are generally stored outside of the cryptographic-engine
protected environment. These working keys are wrapped (DES triple-enciphered)
by a master key. The master key is held in the clear (not enciphered) within the
cryptographic engine.

The number of keys a node can use is restricted only by the storage capabilities of
the node, not by the finite amount of storage within the Coprocessor secure
module. In addition, keys can be used by other cryptographic nodes that have the
same master-key data. This feature is useful in high-availability or high-throughput
environments where multiple cryptographic processors must function in parallel.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Establishing a Master Key: To protect working keys, the master key must be
generated and initialized in a secure manner. One method uses the internal
random-number generator for the source of the master key. In this case, the
master key is never external to the node as an entity, and no other node will have
the same master key? unless master-key cloning is authorized and in use. If the
Coprocessor detects tampering and destroys the master key, there is no way to
recover the working keys that it wrapped.

Another master-key-establishment method enables authorized users to enter
multiple, separate 168-bit key parts into the cryptographic engine. As each part is
entered, that part is exclusive-ORed with the contents of the new master-key
register. When all parts have been accumulated, a separate command is issued to
promote the contents of the current master-key register to the old master-key
register, and to promote the contents of the new master-key register to the current
master-key register.

A master key can be “cloned” (copied) from one IBM 4758 CCA node to another
IBM 4758 CCA node through a process of master-key-shares distribution. This
process is protected through the use of digital certificates and authorizations.
Under this process, the master key can be reconstituted in one or more additional
IBM 4758s through the transport of encrypted shares of the master key.
“Understanding and Managing Master Keys” on page 2-12 provides additional
detail about master-key management.

CCA Verbs: Application and utility programs (requestors) obtain service from the
CCA support program by issuing service requests (“verb calls” or “procedure calls”)
to the runtime subsystem. To fulfill these requests, the support program obtains
service from the Coprocessor software and hardware.

The available services are collectively described as the CCA security API. All of
the software and hardware accessed through the CCA security APl should be
considered an integrated subsystem. A command processor performs the verb
request within the cryptographic engine.

Commands and Access Control: In order to ensure that only designated
individuals (or programs) can execute sensitive commands such as master-key
loading, each command processor interrogates one or more control-point values
within the cryptographic engine access-control system for permission to perform the
request.

The access-control system includes roles. Each role defines the permissible
control points for users associated with that role. The access-control system also
supports user profiles that are referenced by a user ID. Each profile associates the
user ID with a role, logon verification method and authentication information, and a
logon session-key. Within a host process, one and only one profile, and thus role,
can be logged on at a time. In the absence of a logged-on user, a default role
defines the permitted commands (via the control points in the role) that a process
can use.

2 Unless, out of the 2168 possible values, another node randomly generates the same master-key data.

Chapter 1. Introduction to Programming for the IBM CCA 1-5

CCA Release 2.52

The Coprocessor supports multiple logons by different users from different host
processes. The Coprocessor also supports requests from multiple threads within a
single host process.

A user is logged on and off by the Logon_Control verb. During logon, the
Logon_Control verb establishes a logon session key. This key is held in
user-process memory space and in the cryptographic engine. All verbs append
and verify a MAC based on this key on verb control information exchanged with the
cryptographic engine. Logoff causes the cryptographic engine to destroy its copy of
the session key and to mark the user profile as not active.

“CCA Access-Control” on page 2-2 provides a further explanation of the
access-control system, and 2-52 provides details about the logon verb.

How Application Programs Obtain Service

1-6

Application programs and utility programs (requestors) obtain services from the
security product by issuing service requests (verb calls) to the runtime subsystem
of software and hardware. These requests are in the form of procedure calls that
must be programmed according to the rules of the language in which the
application is coded. The services that are available are collectively described as
the security API. All of the software and hardware accessed through the security
API should be considered an integrated subsystem.

When the cryptographic-services access layer receives requests concurrently from
multiple application programs, it serializes the requests and returns a response for
each request. There are other multiprocessing implications arising from the
existence of a common master-key and a common key-storage facility -- these
topics are covered later in this book.

The way in which application programs and utilities are linked to the API services
depends on the computing environment. In the AlX, and Windows 2000 and
Windows/NT environments, the operating systems dynamically link application
security API requests to the subsystem DLL code (AIX: shared library; OS/400:
service program). Your choice of import library controls the use of 16-bit or 32-bit
entry-point services. In the OS/400 environment, the CCA API is implemented in a
set of 64-bit entry-point service programs, one for each security API verb. Details
for linking to the API are covered in the guide book for the individual software
products. For the AIX, and Windows NT/2000, see the IBM 4758 CCA Support
Program Installation Manual. Details for linking to the APl on the OS/400 platform
can be found by following the OS/400 link from the CCA support page of the
product Web site, http.//www.ibm.com/security/cryptocards.

Together, the security APl DLL and the environment-dependent request routing
mechanism act as an agent on behalf of the application and present a request to
the server. Requests can be issued by one or more programs. Each request is
processed by the server as a self-contained unit of work. The programming
interface can be called concurrently by applications running as different processes.
The API can be used by multiple threads in a process. The API is thread safe.

In each server environment, a device driver provided by IBM supplies low-level
control of the hardware and passes the request to the hardware device. Requests
can require one or more I/0O commands from the security server to the device driver
and hardware.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

The security server and a directory server manage key storage. Applications can
store locally used cryptographic keys in a key-storage facility. This is especially
useful for long-life keys. Keys stored in key storage are referenced through the use
of a key label. Before deciding whether to use the key-storage facility or to let the
application retain the keys, you must consider system design trade-off factors, such
as key backup, the impact of master-key changing, the lifetime of a key, and so
forth.

Overlapped Processing

Calls to the CCA API are synchronous; your program loses control until the verb
completes. Multiple-process threads can make concurrent calls to the API. The
CCA implementation for IBM OS/2 and for Windows NT and Windows 2000 restrict
the number of concurrent outstanding calls for a Coprocessor to 32.3

You can maximize throughput by organizing your application(s) to make multiple,
overlapping calls to the CCA API. You can also increase throughput by employing
multiple Coprocessors, each with CCA (see “Multi-Coprocessor Capability” on
page 2-10). The limit of 32 concurrent CCA calls applies to each Coprocessor,
and therefore with multiple Coprocessors you can have more than 32 outstanding
CCA API calls.

Within the Coprocessor, the CCA software is organized into multiple threads of
processing. This multi-processing design is intended to enable concurrent use of
the Coprocessor's main engine, PCl communications, DES and SHA-1 engine, and
modular-exponentiation engine.

Host-side Key Caching

Beginning with Release 2, the CCA implementation provided caching of key records
obtained from key storage within the CCA host code. However, the host cache is
unique for each host process. If different host processes access the same key
record, an update to a key record caused in one process will not affect the contents
of the key cache held for other process(es). Beginning with Release 2.41, caching
of key records within the key storage system can be suppressed so that all
processes will access the most current key records. The techniques used to
suppress key-record caching are discussed in the IBM 4758 PCI Cryptographic
Coprocessor CCA Support Program Installation Manual.

3 The limitation of 32 concurrent API calls does not apply to the implementation for AlIX.

Chapter 1. Introduction to Programming for the IBM CCA 1-7

CCA Release 2.52

The Security APl, Programming Fundamentals

You obtain CCA cryptographic services from the PCI Cryptographic Coprocessor
through procedure calls to the CCA security application programming interface
(API). Most of the services provided are considered an implementation of the IBM
Common Cryptographic Architecture (CCA). Most of the extensions that differ from
other IBM CCA implementations are in the area of the access-control services. If
your application program will be used with other CCA products, you should
compare the other-product literature for differences.

Your application program requests a service through the security API by using a
procedure call for a verb.* The procedure call for a verb uses the standard syntax
of a programming language, including the entry-point name of the verb, the
parameters of the verb, and the variables for the parameters. Each verb has an
entry-point name and a fixed-length parameter list. See the first page of each of
the following chapters to learn what verbs are provided.

The security APl is designed for use with high-level languages, such as C, COBOL
(OS/400), or RPG (0S/400), and for low-level languages, such as assembler. It is
also designed to enable you to use the same verb entry-point names and variables
in the various supported environments. Therefore, application code that you write
for use in one environment generally can be ported to additional environments with
minimal change.

Verbs, Variables, and Parameters

This section explains how each verb (service) is described in the reference material
and provides an explanation of the characteristics of the security API.

Each callable service, or verb, has an entry-point name and a fixed-length
parameter list. The reference material describes each verb and includes the
following information for each verb:

e Pseudonym

e Entry-point name

e Supported environment(s)

e Description

e Restrictions

e Format

e Parameters

* Hardware command requirements.

Pseudonym and Entry-Point Name: Each verb has a pseudonym
(general-language name) and an entry-point name (computer-language name).
The entry-point name is used in your program to call the verb. Each verb's
entry-point name begins with one of the following:

CSNB Generally the DES services
CSND RSA public-key services (PKA96)

4 The term verb implies an action that an application program can initiate; other systems and publications might use the term
callable service instead of verb.

1-8

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

CSUA Cryptographic-node and hardware-control services.
The last three letters in the entry-point name identify the specific service in a group
and are often the first letters of the principal words in the verb pseudonym.

Supported Environments: At the start of each verb description is a table that
describes which CCA implementations support the verb. For example:

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The table indicates which models of Coprocessor support the verb and which
operating system platform(s) are supported. An X indicates that the verb is
supported as described.

Description: The verb is described in general terms. Be sure to read the
parameter descriptions as these add additional detail. A Related Information
section appears at the end of the verb material for a very few verbs.

Restrictions: Restrictions are as noted.

Format: The format section in each verb description lists the entry-point name on
the first line in bold type. This is followed by the list of parameters for the verb.
Generally the input/output direction in which the variable identified by the parameter
is passed is listed along with the type of variable (integer or string), and the size,
number, or other special information about the variable.

The format section for each verb lists the parameters after the entry-point name in
the sequence in which they must be coded.

Parameters: All information that is exchanged between your application program
and a verb is through the variables that are identified by the parameters in the
procedure call. These parameters are pointers to the variables contained in
application program storage that contain information to be exchanged with the verb.
Each verb has a fixed-length parameter list, and though all parameters are not
always used by the verb, they must be included in the call. The entry-point name
and the parameters for each verb are shown in the following format:

Parameter name Direction Data Length of Data
Type
entry_point_name
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
parameter_5 Direction Data length
Type
parameter_6 Direction Data length
Type
parameter_n Direction Data length
Type

The first four parameters are the same for all of the verbs. For a description of
these parameters, see “Parameters Common to All Verbs” on page 1-11. The
remaining parameters (parameter_5, parameter_6, ..., parameter_n) are unique for

Chapter 1. Introduction to Programming for the IBM CCA 1-9

1-10

CCA Release 2.52

each verb. For descriptions of these parameters, see the definitions with the
individual verbs.

Variable Direction: The parameter descriptions use the following terms to identify
the flow of information:

Input The application program sends the variable to the verb (to the
called routine)

Output The verb returns the variable to the application program

In/Output The application program sends the variable to the verb, or the verb
returns the variable to the application program, or both.

Variable Type: A variable that is identified by a verb parameter can be a single
value or a one-dimensional array. If a parameter identifies an array, each data
element of the array is of the same data type. If the number of elements in the
array is variable, a preceding parameter identifies a variable that contains the
actual number of elements in the associated array. Unless otherwise stated, a
variable is a single value, not an array.

For each verb, the parameter descriptions use the following terms to describe the
type of variable:

Integer A four-byte (32-bit), signed, two's-complement binary number.

In the AIX and OS/400 environments, integer values are presented in
four bytes in the sequence high-order to low-order (big endian). In the
personal computer (Intel) environments, integer values are presented
in four bytes in the sequence low-order to high-order (little endian).

String A series of bytes where the sequence of the bytes must be maintained.
Each byte can take on any bit configuration. The string consists only
of the data bytes. No string terminators, field-length values, or
type-casting parameters are included. Individual verbs can restrict the
byte values within the string to characters or numerics.

Character data must be encoded in the native character set of the
computer where the data is used. Exceptions to this rule are noted
where necessary.

Array An array of values, which can be integers or strings. Only
one-dimensional arrays are permitted. For information about the
parameters that use arrays, see “Rule_Array and Other Keyword
Parameters” on page 1-12.

Variable Length: This is the length, in bytes, of the variable identified by the
parameter being described. This length may be expressed as a specific number of
bytes or it may be expressed in terms of the contents of another variable.

For example, the length of the exit_data variable is expressed in this manner. The
length of the exit_data string variable is specified in the exit_data_length variable.
This length is shown in the parameter tables as “exit_data_length bytes,” The
rule_array variable, on the other hand, is an array whose elements are eight-byte
strings. The number of elements in the rule array is specified in the
rule_array_count variable and its length is shown as “rule_array_count * 8 bytes.”

Note: Variable lengths (integer, for example) that are implied by the variable data
type are not shown in these tables.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Commonly Encountered Parameters

Some parameters are common to all verbs, other parameters are used with many
of the verbs. This section describes several groups of these parameters:

e Parameters common to all verbs
e Rule_array and other keyword parameters
o Key_identifiers, key_labels, and key_tokens.

Parameters Common to All Verbs

The first four parameters (refurn_code, reason_code, exit_data_length, and
exit_data) are the same for all verbs. A parameter is an address pointer to the
associated variable in application storage.

entry_point_name

return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes

return_code
The return_code parameter is a pointer to an integer value that expresses the
general results of processing. See “Return Code and Reason Code Overview’
for more information about return codes

3

reason_code
The reason_code parameter is a pointer to an integer value that expresses the
specific results of processing. Each possible result is assigned a unique
reason code value. See “Return Code and Reason Code Overview” for more
information about reason codes.

exit_data_length
The exit_data_length parameter is a pointer to an integer value containing the
length of the string (in bytes) that is returned by the exit_data value. The
exit_data_length parameter should point to a value of zero to ensure
compatibility with any future extension or other operating environment.

exit_data
The exit_data parameter is a pointer to a variable-length string that contains
installation-exit-dependent data that is exchanged with a preprocessing user
exit or a post-processing user exit.

Note: The IBM 4758 CCA Support Program does not currently support user
exits. The exit_data_length and exit_data variables must be declared in the
parameter list. The exit_data_length parameter should be set to zero to ensure
compatibility with any future extension or other operating environment.

Return Code and Reason Code Overview: The return code provides a general
indication of the results of verb processing and is the value that your application
program should use in determining the course of further processing. The reason
code provides more specific information about the outcome of verb processing.
Note that reason code values generally differ between CCA product
implementations. Therefore, the reason code values should generally be returned
to individuals who can understand the implications in the context of your application
on a specific platform.

The return codes have these general meanings:

Chapter 1. Introduction to Programming for the IBM CCA 1-11

1-12

CCA Release 2.52

Value Meaning

0 Indicates normal completion; a few nonzero reason codes are associated with
this return code.

4 Indicates the verb processing completed, but without full success. For example,
this return code can signal that a supplied PIN was found to be invalid.

8 Indicates that the verb prematurely stopped processing. Generally the
application programmer will need to investigate the problem and will need to
know the associated reason code.

12 Indicates that the verb prematurely stopped processing. The reason is most
likely related to a problem in the setup of the hardware or in the configuration of
the software.

16 Indicates that the verb prematurely stopped processing. A processing error
occurred in the product. If these errors persist, a repair of the hardware or a
correction to the product software may be required.

See Appendix A, “Return Codes and Reason Codes” for a detailed discussion of
return codes and a complete list of all return and reason codes.

Rule_Array and Other Keyword Parameters

Rule_array parameters and some other parameters use keywords to transfer
information. Generally, a rule array consists of a variable number of data elements
that contain keywords that direct specific details of the verb process. Almost all
keywords, in a rule array or otherwise, are eight bytes in length, and should be
uppercase, left-justified, and padded with space characters. While some
implementations can fold lowercase characters to uppercase, you should always
code the keywords in uppercase.

The number of keywords in a rule array is specified by a rule_array_count variable,
an integer that defines the number of (eight-byte) elements in the array.

In some cases, a rule_array is used to convey information other than keywords
between your application and the server. This is, however, an exception.

Key Tokens, Key Labels, and Key Identifiers

Essentially all cryptographic operations employ one or more keys. In CCA, keys
are retained within a structure called a key token. A verb parameter can point to a
variable that contains a key token. Generally you do not need to be concerned
with the details of a key token and can deal with it as an entity. See “Key Tokens”
on page B-1 for a detailed description of the key-token structures.

Keys are described as either internal, operational, or external, as follows:

Internal A key that is encrypted for local use. The cryptographic engine will
decrypt (unwrap) an internal key to use the key in a local operation.
Once a key is entered into the system it is always encrypted
(wrapped) if it appears outside of the protected environment of the
cryptographic engine. The engine has a special key-encrypting key
designated a master key. This key is held within the engine to wrap
and unwrap locally used keys.

Operational An internal key that is complete and ready for use. During entry of a
key, the internal key-token can have a flag set that indicates the key
information is incomplete.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

External A key that is either in the clear, or is encrypted (wrapped) by some
key-encrypting key other than the master key. Generally, when a
key is to be transported from place to place, or is to be held for a
significant period of time, it is required to encrypt the key with a
transport key. A key wrapped by a transport key-encrypting key is
designated external.

RSA public-keys are not encrypted values (in PKA96), and when not
accompanied by private-key information, are retained in an external
key-token.

Internal key-tokens can be stored in a file that is maintained by the directory server.
These key tokens are referenced by use of a key label. A key label is an
alphanumeric string that you place in a variable and reference with a verb
parameter.

Verb descriptions specify how you can provide a key using these terms:
Key token The variable must contain a proper key-token structure.

Key label The variable must contain a key label string used to locate a key
record in key storage.

Key identifier The variable must contain either a key token or a key label. The
first byte in the variable defines if the variable contains a key token
or a key label. When the first byte is in the range X'20' through
X'FE', the variable is processed as a key label. There are
additional restrictions on the value of a key label. See “Key-Label
Content” on page 7-2. The first byte in all key-token structures is in
the range of X'01' to X'1F'. X'00' indicates a DES null key-token.
X'FF' as the first byte of a key-related variable passed to the API
raises an error condition.

How the Verbs Are Organized in the Remainder of the Book

Now that you have a basic understanding of the API, you can find these topics in
the remainder of the book:

e Chapter 2, “CCA Node-Management and Access-Control” explains how the
cryptographic engine and the rest of the cryptographic node is administered.
There are four topics:

Access-control administration
Controlling the cryptographic facility
Multi-Coprocessor support
Master-key administration.

Keeping cryptographic keys private or secret can be accomplished by retaining
them in secure hardware. Keeping the keys in secure hardware can be
inconvenient or impossible if there are a large number of keys, or the key has
to be usable with more than one hardware device. In the CCA implementation,
a master key is used to encrypt (wrap) locally used keys. The master key itself
is securely installed within the cryptographic engine and cannot be retrieved as
an entity from the engine.

As you examine the verb descriptions throughout this book, you will see
reference to “Required Commands.” Aimost all of the verbs request the
cryptographic engine (the “adapter” or “Coprocessor”) to perform one or more

Chapter 1. Introduction to Programming for the IBM CCA 1-13

1-14

CCA Release 2.52

commands in the performance of the verb. Each of these commands has to be
authorized for use. Access-control administration concerns managing these
authorizations.

Chapter 3, “RSA Key-Management” explains how you can generate and
protect an RSA key-pair. The chapter also explains how you can control the
distribution of the RSA private key for backup and archive purposes and to
enable multiple cryptographic engines to use the key for performance or
availability considerations. Related services for creating and parsing RSA
key-tokens are also described.

When you wish to backup an RSA private key, or supply the key to another
node, you will use a double-length DES key-encrypting key, a transport key.
You will find it useful to have a general understanding of the DES
key-management concepts found in chapter Chapter 5, “DES
Key-Management.”

Chapter 4, “Hashing and Digital Signatures” explains how you can:

— Provide for demonstrations of the integrity of data -- demonstrate that data
has not been changed
— Attribute data uniquely to the holder of a private key.

These problems can be solved through the use of a digital signature. The
chapter explains how you can hash data (obtain a number that is characteristic
of the data, a digest) and how you can use this to obtain and validate a digital
signature.

Chapter 5, “DES Key-Management” explains the many services that are
available to manage the generation, installation, and distribution of DES keys.

An important aspect of DES key-management is the means by which these
keys can be restricted to selected purposes. Deficiencies in key management
are the main means by which a cryptographic system can be broken.
Controlling the use of a key and its distribution is almost as important as
keeping the key a secret. CCA employs a non-secret quantity, the control
vector, to determine the use of a key and thus improve the security of a node.
Control vectors are described in detail in Appendix C, “CCA Control-Vector
Definitions and Key Encryption.”

Chapter 6, “Data Confidentiality and Data Integrity” explains how you can
encrypt data. The chapter also describes how you can use DES to
demonstrate the integrity of data through the production and verification of
message authentication codes.

Chapter 7, “Key-Storage Verbs” explains how you can label, store, retrieve,
and locate keys in the cryptographic-services access-layer-managed key
storage.

Chapter 8, “Financial Services Support Verbs” explains three groups of verbs
of especial use in finance industry transaction processing:

— Processing keys and information related to the Secure Electronic
Transaction (SET) protocol

— A suite of verbs for processing personal identification numbers (PIN) in
various phases of automated teller machine and point-of-sale transaction
processing

— Verbs to generate and verify credit-card and debit-card validation codes.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Chapter 2. CCA Node-Management and Access-Control

This chapter discusses:

e The access-control system that you can use to control who can perform various
sensitive operations at what times

¢ Controlling the cryptographic facility

e Multi-Coprocessor support

* The CCA master-key, what it is, and how you manage the key

e How you can initialize the cryptographic key-storage that is managed by the
support software.

The verbs that you use to accomplish these tasks are listed in Figure 2-1.

Figure 2-1. CCA Node, Access-Control, and Master-Key Management Verbs

Verb Page | Service Entry Sve
Point Lcn
Access_Control_lnitialization 2-21 Initializes or updates access-control tables in the CSUAACI E
Coprocessor.
Access_Control_Maintenance 2-24 Queries or controls installed roles and user CSUAACM E
profiles.
Cryptographic_Facility_Control 2-30 Reinitializes the CCA application, sets the CSUACFC E

adapter clock, resets the intrusion latch, sets the
CCA environment identifier (EID), sets the
number of master-key shares required and
possible for distributing the master key, loads
the CCA function control vector (FCV) that
manages international export and import
regulation limitations.

Cryptographic_Facility_Query 2-34 Retrieves information about the Coprocessor CSUACFQ E
and the state of master-key-shares distribution
processing.

Cryptographic_Resource_Allocate 2-44 Connects subsequent calls to an alternative CSUACRA S
cryptographic resource (Coprocessor).

Cryptographic_Resource_Deallocate 2-46 Reverts subsequent calls to the default CSUACRD S
cryptographic resource (Coprocessor).

Key_Storage_Designate 2-48 Specifies the key-storage file used by the CSUAKSD S
process.

Key_Storage_Initialization 2-50 Initializes one or the other of the key-storage CSNBKSI S/E
files that can store DES or RSA (public/private)
keys.

Logon_Control 2-52 Logs on or off the Cryptographic Coprocessor. CSUALCT

Master_Key_Distribution 2-55 Supports the distribution and reception of CSUAMKD
master-key shares.

Master_Key_Process 2-59 Enables the introduction of a master key into the CSNBMKP E

Coprocessor, the random generation of a
master key, the setting and clearing of the
master-key registers.

Random_Number_Tests 2-64 Enables tests of the random-number generator CSUARNT E
and performance of the FIPS-mandated
known-answer tests.

Service location (Svc Len): E=Cryptographic Engine, S=Security API software

© Copyright IBM Corp. 1997, 2004 2-1

CCA Release 2.52

CCA Access-Control

This section describes these CCA access-control system topics:

e Understanding access control

* Role-based access control

* Initializing and managing the access-control system
* Logging on and logging off

e Protecting your transaction information.

Understanding Access Control

Access control is the process that determines which CCA services or “commands™
of the IBM 4758 PCI Cryptographic Coprocessor are available to a user at any
given time. The system administrator can give users differing authority, so that
some users have the ability to use CCA services that are not available to others.
In addition, a given user's authority may be limited by parameters such as the time
of day or the day of the week.

Also see the discussion of Access Controls in Chapter 6 of the IBM 4758 PCI
Cryptographic Coprocessor CCA Support Program Installation Manual.

Role-Based Access Control

The IBM 4758 CCA implementation uses role-based access control. In a
role-based system, the administrator defines a set of roles, which correspond to the
classes of Coprocessor users. Each user is enrolled by defining a user profile,
which maps the user to one of the available roles. Profiles are described in
“Understanding Profiles” on page 2-4.

Note: For purposes of this discussion, a user is defined as either a human user or
an automated, computerized process.

As an example, a simple system might have the following three roles:

General User A user class which includes all Coprocessor users who do not have
any special privileges

Key-Management Officer Those people who have the authority to change
cryptographic keys for the Coprocessor

Access-Control Administrator Those people who have the authority to enroll new
users into the Coprocessor environment, and to modify the access rights of
those users who are already enrolled.

Normally, only a few users would be associated with the Key-Management Officer
role, but there generally would be a large population of users associated with
General User role. The Access-Control Administrator role would likely be limited to
a single “super user” since he can make any change to the access control settings.
In some cases, once the system is setup, it is desirable to delete all profiles linked
to Access-Control Administrator roles to prevent further changes to the access
controls.

1 At the end of each CCA verb description you will find a list of commands that must be enabled to use specific capabilities of the
CCA verb.

2-2 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

A role-based system is more efficient than one in which the authority is assigned
individually for each user. In general, users can be segregated into just a few
different categories of access rights. The use of roles allows the administrator to
define each of these categories just once, in the form of a role.

Understanding Roles
Each role defines the permissions and other characteristics associated with users
having that role. The role contains the following information:

Role ID A character string which defines the name of the role. This name is
referenced in user profiles, to show which role defines the user's authority.

Required User-Authentication Strength Level The access-control system is
designed to allow a variety of user authentication mechanisms. Although the
only one supported today is passphrase authentication, the design is ready for
others that may be used in the future.

All user-authentication mechanisms are given a strength rating, namely an
integer value where zero is the minimum strength corresponding to no
authentication at all. If the strength of the user's authentication mechanism is
less than the required strength for the role, the user is not permitted to log on.

Valid Time and Valid Days-of-Week These values define the times of the day and
the days of the week when the users with this role are permitted to log on. If
the current time is outside the values defined for the role, logon is not allowed.
It is possible to choose values that let users log on at any time on any day of
the week.

Notes:
1. Times are specified in Greenwich Mean Time (GMT).

2. If you physically move a Coprocessor between time zones, remember that
you must resynchronize the CCA-managed clock with the host-system
clock.

Permitted Commands A list defining which commands the user is allowed to
perform in the Coprocessor. Each command corresponds to one of the
primitive functions which collectively comprise the CCA implementation.

Comment A 20-byte comment can be incorporated into the role for future
reference.

In addition, the role contains control and error-checking fields. The detailed layout
of the role data-structure can be found in “Role Structure” on page B-29.

The Default Role: Every CCA Coprocessor must have at least one role, called
the default role. Any user who has not logged on and been authenticated will
operate with the capabilities and restrictions defined in the default role.

Note: Since unauthenticated users have authentication strength equal to zero, the
Required User-Authentication Strength Level of the Default Role must also be zero.

The Coprocessor can have a variable number of additional roles, as needed and
defined by the customer. For simple applications, the default role by itself may be
sufficient. Any number of roles can be defined, as long as the Coprocessor has
enough available storage to hold them.

Chapter 2. CCA Node-Management and Access-Control ~ 2-3

CCA Release 2.52

Understanding Profiles

Any user who needs to be authenticated to the Coprocessor must have a user
profile. Users who only need the capabilities defined in the default role do not need
a profile.

A user profile defines a specific user to the CCA implementation. Each profile
contains the following information:

User ID This is the “name” used to identify the user to the Coprocessor. The User
ID is an eight-byte value, with no restrictions on its content. Although it will
typically be an unterminated ASCII (or EBCDIC on OS/400) character string,
any 64-bit string is acceptable.?

Comment A 20-byte comment can be incorporated into the profile for future
reference.

Logon Failure Count This field contains a count of the number of consecutive
times the user has failed a logon attempt, due to incorrect authentication data.
The count is reset each time the user has a successful logon. The user is no
longer allowed to log on after three consecutive failures. This lockout
condition can be reset by an administrator whose role has sufficient authority.

Role ID This character string identifies the role that contains the user's
authorization information. The authority defined in the role takes effect after
the user successfully logs on to the Coprocessor.

Activation and Expiration Dates These values define the first and last dates on
which this user is permitted to log on to the Coprocessor. An administrator
whose role has the necessary authority can reset these fields to extend the
user's access period.

Authentication Data Authentication data is the information used to verify the
identity of the user. It is a self-defining structure, which can accommodate
many different authentication mechanisms. In the current CCA
implementation, user identification is accomplished by means of a passphrase
supplied to the Logon_Control verb.

The profile's authentication-data field can hold data for more than one
authentication mechanism. If more than one is present in a user's profile, any
of the mechanisms can be used to log on. Different mechanisms, however,
may have different strengths.

The structure of the authentication data is described in “Authentication Data
Structure” on page B-33.

In addition, the profile contains other control and error-checking fields. The detailed
layout of the profile data-structure can be found in “Profile Structure” on page B-32.

Profile(s) are stored in non-volatile memory inside the secure module on the
Coprocessor. When a user logs on, his stored profile is used to authenticate the
information presented to the Coprocessor. In most applications, the majority of the
users will operate under the default role, and will not have user profiles. Only the
security officers and other special users will need profiles.

2 In many cases, a utility program will be used to enter the user ID. That utility may restrict the ID to a specific character set.

2-4 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Initializing and Managing the Access-Control System

Before you can use a Coprocessor with newly loaded or initialized CCA support
you should initialize roles, profiles, and other data. You may also need to update
some of these values from time to time. Access-control initialization and
management are the processes you will use to accomplish this.

You can initialize and manage the access-control system in either of two ways:
e You can use the IBM-supplied utility program for your platform:

— Cryptographic Node Management utility program® (“CNM”) (not for OS/400)
— 0S/400 Cryptographic Coprocessor web-based configuration utility.

* You can write programs that use the access-control verbs described in this
chapter.

The verbs allow you to write programs that do more than the utility program
included with the CCA Support Program. If your needs are simple, however, the
utility program may do everything you need.

Access-Control Management and Initialization Verbs
Two verbs provide all of the access-control management and initialization functions:

CSUAACI Perform access-control initialization functions

CSUAACM Perform access-control management functions.

With Access_Control_lInitialization, you can perform functions such as:

e Loading roles and user profiles

e Changing the expiration date for a user profile

e Changing the authentication data in a user profile

» Resetting the authentication failure-count in a user profile.

With Access_Control_Maintenance, you can perform functions such as:

e Getting a list of the installed roles or user profiles

* Retrieving the non-secret data for a selected role or user profile
¢ Deleting a selected role or user profile from the Coprocessor

e Get a list of the users who are logged on to the Coprocessor.

These two verbs are fully described on pages 2-21 and 2-24, respectively. See
also “Access-Control Data Structures” on page B-28.

Permitting Changes to the Configuration

It is possible to setup the Coprocessor so no one is authorized to perform any
functions, including further initialization. It is also possible to setup the Coprocessor
where operational commands are available, but not initialization commands,
meaning you could never change the configuration of the Coprocessor. This
happens if you setup the Coprocessor with no roles having the authority to perform
initialization functions.

3 The Cryptographic Node Management utility is described in the IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Installation Manual.

Chapter 2. CCA Node-Management and Access-Control ~ 2-5

CCA Release 2.52

Take care to ensure that you define roles that have the authority to perform
initialization, including the RQ-TOKEN and RQ-REINT options of the
Cryptographic_Facility_Control (CSUACFC) verb. You must also ensure there are
active profiles that use these roles.

If you configure your Coprocessor so that initialization is not allowed, you can
recover by reloading* the Coprocessor CCA software. This will delete all
information previously loaded, and restore the Coprocessor's CCA function to its
initial state.

Configuration and Greenwich Mean Time (GMT)

CCA always operates with GMT time. This means that the time, date, and
day-of-the-week values in the Coprocessor are measured according to GMT. This
can be confusing because of its effect on access-control checking.

All users have operating time limits, based on values in their roles and profiles.
These include:

» Profile activation and expiration dates
e Time-of-day limits
e Day-of-the-week limits.

All of these limits are measured using time in the Coprocessor's frame of reference,
not the user's. If your role says that you are authorized to use the Coprocessor on
days Monday through Friday, it means Monday through Friday in the GMT time
zone, not your local time zone. In like manner, if your profile expiration date is
December 31, it means December 31 in GMT.

In the Eastern United States, your time differs from GMT by four hours during the
part of the year Daylight Savings Time is in effect. At noon local time, it is 4:00 PM
GMT. At 8:00 PM local time, it is midnight GMT, which is the time the Coprocessor
increments its date and day-of-the-week to the next day.

For example, at 7:00 PM on Tuesday, December 30 local time, it is 11:00 PM,
Tuesday, December 30 to the Coprocessor. Two hours later, however, at 9:00 PM,
Tuesday, December 30 local time, it is 1:00 AM Wednesday, December 31 to the
Coprocessor. If your role only allows you to use the Coprocessor on Tuesday, you
would have access until 8:00 PM on Tuesday. After that, it would be Wednesday
in the GMT time frame used by the Coprocessor.

This happens because the Coprocessor does not know where you are located, and
how much your time differs from GMT. Time zone information could be obtained
from your local workstation, but this information could not be trusted by the
Coprocessor; it could be forged in order to obtain access at times the system
administrator intended to keep you from using the Coprocessor.

4 Use file CNWxxxyy.CLU. See Chapter 4 of the IBM 4758 PCI Cryptographic Coprocessor CCA Support Program Installation
Manual.

2-6 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Notes:

1. During the portions of the year when Daylight Savings Time is not in effect, the
time difference between Eastern Standard Time and GMT is 5 hours.

2. In the OS/400 environment, no translation is provided for Role and Profile
names. The Coprocessor will initialize the default role name to DEFAULT
encoded in ASCIIl. OS/400 CCA users will need to consider the encoding of
Role and Profile names.

Logging On and Logging Off

A user must log on to the Coprocessor in order to activate a user profile and the
associated role. This is the only way to use a role other than the default role. You
log on and log off using the Logon_Control verb, which is described on page 2-52.

When you successfully log on, the CCA implementation establishes a session
between your application program and the Coprocessor's access-control system.
The Security Application Program Interface (SAPI) code stores the logon context
information, which contains the session information needed by the host computer to
protect and validate transactions sent to the Coprocessor. As part of that session,
a randomly derived session key, generated in the Coprocessor, is subsequently
used to protect information you interchange with the Coprocessor. This protection
is described in “Protecting Your Transaction Information” on page 2-9. The logon
process and its algorithms are described in “Passphrase Verification Protocol” on
page D-16.

On 0S/2, AIX, and NT, the logon context information resides in memory associated
with the process thread which performed the Logon_Control verb. On OS/400, the
logon context information resides in memory owned by the process in which the
application runs. Host-side logon context information can be saved and shared
with other threads, processes, or programs; see “Use of Logon Context Information”
on page 2-8.

Thus, on 0S/2, AIX, and NT, each thread in any process can log on to the CCA
access control system within a specific CCA Coprocessor. Because the
Coprocessor code creates the session key, and the session key is stored in the
active context information, a thread cannot concurrently be logged on to more that
one Coprocessor.

In order to log on, you must prove the user's identity to the Coprocessor. This is
accomplished using a passphrase, a string of up to 64 characters which are known
only to you and the Coprocessor. A good passphrase should not be too short, and
it should contain a mixture of alphabetic characters, numeric characters, and
special symbols such as “*,” “+,” “1,” and others. It should not be comprised of
familiar words or other information which someone might be able to guess.

When you log on, no part of the passphrase ever travels over any interface to the
Coprocessor. The passphrase is hashed and processed into a key that encrypts
information passed to the Coprocessor. The Coprocessor has a copy of the hash
and can construct the same key to recover and validate the log-on information.
CCA does not communicate your passphrase outside of the memory owned by the
calling process.

When you have finished your work with the Coprocessor, you must log off in order
to end your session. This invalidates the session key you established when you

Chapter 2. CCA Node-Management and Access-Control ~ 2-7

2-8

CCA Release 2.52

logged on, and frees resources you were using in the host system and in the
Coprocessor.

Use of Logon Context Information
The Logon_Control verb offers the capability to save and restore logon context
information through the GET-CNTX and PUT-CNTX rule-array keywords.

The GET-CNTX keyword is used to retrieve a copy of your active logon context
information, which you can then store for subsequent use. The PUT-CNTX
keyword is used to make active previously stored context information. Note that
the Coprocessor is unaware of what thread, program, or process has initiated a
request. The host CCA code supplies session information from the active context
information in each request to the Coprocessor. The Coprocessor attempts to
match this information with information it has retained for its active sessions.
Unmatched session information will cause the Coprocessor to reject the associated
request.

As an example, consider a simple application which contains two programs,
LOGON and ENCRYPT:

e The program LOGON logs you on to the Coprocessor using your passphrase.

e The program ENCRYPT encrypts some data. The roles defined for your
system require you to be logged on in order to use the ENCIPHER function.

These two programs must use the GET-CNTX and PUT-CNTX keywords in order
to work properly. They should work as follows:

LOGON

1. Log the user on to the Coprocessor using CSUALCT verb with the
PPHRASE keyword.

2. Retrieve the logon context information using CSUALCT with the
GET-CNTX keyword.

3. Save the logon context information in a place that will be available
to the ENCIPHER program. This could be as simple as a disk file,
or it could be something more complicated such as shared memory
or a background process.

ENCRYPT

1. Retrieve the logon context information saved by the LOGON
program.

2. Restore the logon context information to the CCA API code using
the CSUALCT verb with the PUT-CNTX keyword.

3. Encipher the data.

Note: You should take care in storing the logon context information. Design your
software so that the saved context is protected from disclosure to others who may
be using the same computer. If someone is able to obtain your logon context
information, they may be able to impersonate you for the duration of your logon
session.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Protecting Your Transaction Information

When you are logged on to the Coprocessor, the information transmitted to and
from the CCA Coprocessor application is cryptographically protected using your
session key. A message authentication code is used to ensure that the data was
not altered during transmission. Since this code is calculated using your session
key, it also verifies that you are the originator of the request, not someone else
attempting to impersonate you.

For some verbs, it is also important to keep the information secret. This is
especially important with the Access_Control_lnitialization verb, which is used to
send new role and profile data to the Coprocessor. To ensure secrecy, some verbs
offer a special protected option, which causes the data to be encrypted using your
session key. This prevents disclosure of the critical data, even if the message is
intercepted during transmission to the Coprocessor.

Controlling the Cryptographic Facility

There are six verbs that you can call to manage aspects of the CCA Coprocessor.
One of these, the Key_Storage_Designate verb, is unique to the 0S/400
implementation and allows you to select among key-storage files.

The Cryptographic_Facility_Query verb enables you to obtain the status of the CCA
node. You specify one of several status categories, and the verb returns that
category of status. Status information you can obtain includes:

e The condition of the master-key registers: clear, full, and so forth. Note that the
extended CCA status returns information about both the symmetric and the
asymmetric master-key-register sets.

e The role name in effect for your processing thread.

» Information about the Coprocessor hardware including the unique eight-byte
serial number. This serial number is also printed on the label on the
Coprocessor's mounting bracket.

» The state of the Coprocessor's battery: OK or change the battery soon.

e Various tamper indications. Note that this information is also returned in
X'8040xxxx"' status messages, for example, when you use the Coprocessor
Load Utility.

e Time and date from the Coprocessor's internal clock.

e The Environment Id (EID), which is a 16-byte identifier used in the PKA92 key
encryption scheme and in master-key cloning. You assign an EID to represent
the Cryptographic Coprocessor.

e Diagnostic information that could be of value to product development in the
event of malfunction.
The Cryptographic_Facility_Control verb enables you to:

e Reinitialize (“zeroize”) the CCA node. This is a two-step process that requires
your application to compute an intermediate value as insurance against any
inadvertent reinitialize action.

e Set parameters into the CCA node, other than those related to the
access-control system, including: the date and time, the function control vector

Chapter 2. CCA Node-Management and Access-Control ~ 2-9

+ o+ 4+ 4+ 4+

CCA Release 2.52

used to establish the maximum strength of certain cryptographic functions, the
environment identifier, and the maximum number of master-key-cloning shares,
and the minimum number of shares needed to reconstitute a master key.

* Reset the intrusion latch. The intrusion latch circuit can be set by breaking an
external circuit connected to jack 6 (J6) on the Coprocessor. Normally the pins
of J6 are connected to each other with a jumper; see the IBM 4758 PCI
Cryptographic Coprocessor CCA Support Program Installation Manual, Chapter
2. In your installation you might connect an external circuit to J6 that opens if
covers on your host machine are opened. Note that setting the intrusion latch
does not cause zeroization of the Coprocessor. If the intrusion latch is set,
exception status is reported on most verb calls.

* Reset the battery-low indicator (latch). The Coprocessor electronics sets the
battery-low indicator when the reserve power in the battery falls below a
predetermined level. You acknowledge and reset the battery-low condition
using the RESETBAT rule-array keyword. Of course if the battery has not
been replaced, you should expect the low-battery-power condition to return.

The Key_Storage_Initialization verb is used to establish a fresh symmetric or
asymmetric (DES or PKA) key-storage data set. The data file that holds the key
records is initialized with header records that contain a verification pattern for the
master key. Any existing key records in the key storage are lost. The index file is
also initialized. The file names and paths for the key storage and its index file are
obtained from different sources depending on the operating system:

e The AIX ODM registry
e The Windows registry.
See the CCA Support Program Installation Manual for information.

The Cryptographic_Resource_Allocate and Cryptographic_Resource_Deallocate
verbs allow your application to steer requests to one of multiple CCA Coprocessors.
See the “Multi-Coprocessor Capability” for further information.

Multi-Coprocessor Capability

2-10

Multi-Coprocessor support operates with up to eight Coprocessors installed in a
single machine, some or all of which are loaded with the CCA application. When
more than one Coprocessor with CCA is installed, an application program can
explicitly select which cryptographic resource (Coprocessor) to use, or it can
optionally accept the default Coprocessor. To explicitly select a Coprocessor, use
the Cryptographic_Resource_Allocate verb. This verb allocates a Coprocessor
loaded with the CCA software. Once allocated, CCA requests are routed to it until
it is deallocated. To deallocate a currently allocated Coprocessor, use the
Cryptographic_Resource_Deallocate verb. When a Coprocessor is not allocated
(either before an allocation occurs or after the cryptographic resource is
deallocated), requests are routed to the default CCA Coprocessor.

Except for the OS/400 environment, a multi-threaded application program can use
all of the installed CCA Coprocessors simultaneously. A program thread can use
only one of the installed CCA Coprocessors at any given time, but it can switch to a
different installed CCA Coprocessor as needed. To perform the switch, a program
thread must deallocate a currently allocated cryptographic resource, if any, then it
must allocate the desired cryptographic resource. The

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Cryptographic_Resource_Allocate verb will fail if a cryptographic resource is
already allocated.

To determine the number of CCA Coprocessors installed in a machine, use the
Cryptographic_Facility_Query verb with the STATCARD rule-array keyword. The
verb returns the number of Coprocessors running CCA software. The count
includes any Coprocessors loaded with CCA UDX code.

When using multiple CCA Coprocessors, you must consider the implications of the
master keys in each of the Coprocessors. See “Master-Key Considerations with
Multiple CCA Coprocessors” on page 2-17. You must also consider the
implications of a logged-on session. See “Logging On and Logging Off” on

page 2-7.

When you log on to a Coprocessor, the Coprocessor creates a session key and
communicates this to the CCA host code which saves the key in a “session
context” memory area. If your processing alternates between Coprocessors, be
sure to save and restore the appropriate session context information.

Multi-Coprocessor CCA Host Implementation

The implementation in OS/400 host systems varies somewhat from that in the other
environments. The following sections describe each approach:

e (0S/400 multi-coprocessor implementation
e AIX and Windows multi-coprocessor implementation.

0S/400 Multi-Coprocessor Support

With OS/400, the kernel-level code detects all new Coprocessors at IPL time and
assigns them a resource name in the form of CRP01, CRP02, and so forth. In
order to use a Coprocessor, a user must create a cryptographic device description
object. When creating the device description object, the user specifies the
cryptographic resource name. The name of the device description object itself is
completely arbitrary. A user can call the object “BANK1,” “CRYPTO,” “CRPO01,”
or whatever. The device-description-object name has no bearing on which
resource it names. A user could create a device-description-object named CRPO1
that internally names the CRPO03 resource. (Unless you are intentionally renaming
a resource, such a practice would likely lead to confusion.) With the
Cryptographic_Resource_Allocate and Cryptographic_Resource_Deallocate verbs,
you specify a device-description-object name (and not an OS/400 resource name).
If no device has been allocated, the CCA code will default to use of the object
named “CRPO01,” if any. If no such object exists, the verb will terminate abnormally.

Note: The scope of the Cryptographic_Resource_Allocate and the
Cryptographic_Resource_Deallocate verbs is operating-system dependent. For
0S/400, these verbs are scoped to a process.

AIX, Windows and OS/2 Multi-Coprocessor Support

With the first call to CCA from a process, the CCA host code associates
Coprocessor designators CRP01 through CRP08 with specific Coprocessors. The
host code determines the total number of Coprocessors installed through a call to

Chapter 2. CCA Node-Management and Access-Control ~ 2-11

CCA Release 2.52

the Coprocessor device driver.5 The host code then polls each Coprocessor in turn
to determine which ones contain the CCA application. As each Coprocessor is
evaluated, the CCA host code associates the identifiers CRP01, CRP02, and so
forth to the Coprocessors with CCA.®

In the absence of a specific Coprocessor allocation, the host code employs the
device designated CRPO1 by default. You can alter the default designation by
explicitly setting the CSU_DEFAULT_ADAPTER environment variable. The
selection of a default device occurs with the first CCA call to a Coprocessor. Once
selected, the default remains constant throughout the life of the thread. Changing
the value of the environment variable after a thread uses a Coprocessor does not
affect the assignment of the default CCA Coprocessor.

If a thread with an allocated Coprocessor terminates without first deallocating the
Coprocessor, excess memory consumption will result. It is not necessary to
deallocate a cryptographic resource if the process itself is terminating; it is only
suggested if individual threads terminate while the process continues to run.

Note: The scope of the Cryptographic_Resource_Allocate and the
Cryptographic_Resource_Deallocate verbs is operating-system dependent. For the
AIX and Windows implementations, these verbs are scoped to a thread. "Scoped
to a thread" means that each of several threads within a process can allocate a
specific Coprocessor.

Understanding and Managing Master Keys

In a CCA node, the master key is used to encrypt (wrap) working keys used by the
node that can appear outside of the cryptographic engine. The working keys are
triple encrypted. This method of securing keys enables a node to operate on an
essentially unlimited number of working keys without concern for storage space
within the confines of the secured cryptographic engine.

The CCA design supports three master-key registers: new, current, and old. While
a master key is being assembled, it is accumulated in the new master-key register.
Then the Master_Key_Process verb is used to transfer (sef) the contents of the
new master-key register to the current master-key register.

Working keys are normally encrypted by the current master-key. To facilitate
continuous operations, CCA implementations also have an old master-key register.
When a new master-key is transferred to the current master-key register, the
preexisting contents (if any) of the current master-key register are transferred to the
old master-key register. With the IBM 4758 CCA implementation, whenever a
working key must be decrypted by the master key, master-key verification pattern
information that is included in the key token is used to determine if the current or
the old master-key must be used to recover the working key. Special status (return
code 0, reason code 10001) is returned in case of use of the old master-key so that
your application programs can arrange to have the working key updated to
encryption by the current master-key (using the Key_Token_Change and

5 The device driver designates the Coprocessors using numbers 0, 1, ..., 7. The number assignment is based on the design of the
BIOS in a machine. BIOS routines “walk the bus” to determine the type of device in each PCI slot. Adding, removing, or
relocating Coprocessors can alter the number associated with a specific Coprocessor.

6 Coprocessors loaded with a UDX extension to CCA will also be assigned a CRPOx identifier.

2-12 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

PKA_Key_Token_Change verbs). Whenever a working key is encrypted for local
use, it is encrypted using the current master-key.

Symmetric and Asymmetric Master-Keys

The CCA Version 2 implementation incorporates a second set of master-key
registers. One register set is used to encrypt DES (symmetric) working-keys. The
second register set is used to encrypt PKA (asymmetric) private working-keys. The
verbs that operate on the master keys permit you to specify a register set (with
keywords SYM-MK and ASYM-MK). If your applications that modify the
master-key registers never explicitly select a register set, the master keys in the
two register sets are modified in the same way and will contain the same keys.
However, if at any time you modify only one of the register sets, your applications
will thereafter need to manage the two register sets independently.

The Cryptographic Node Management (CNM) utility does not contain logic to select
a specific register set, and therefore use of CNM results in operation as though
there were only a single set of registers. Note that if you use another program to
modify a register in only one of the register sets, the CNM utility will no longer be
usable for updating the master keys.

For consistency with the S/390 CCA implementation, you can use a symmetric-key
master-key that has an effective double-length (usually master keys are triple
length). To accomplish this, use the same key value for the first and third 8-byte
portion of the key.

Establishing Master Keys

Master keys are established in one of three ways:

1. From clear key parts (components)
2. Through random generation internal to the Coprocessor
3. Cloning (copying encrypted shares).

Establishing a master key from clear information. Individual “key-parts”
(components) are supplied as clear information and the parts are
exclusive-ORed within the cryptographic engine. Knowledge of a single part
gives no information about the final key when multiple (random-valued) parts are
exclusive-ORed.

A common technique is to record the values of the parts (typically on paper or
diskette) and independently store these values in locked safes. When the
master key is to be instantiated in a cryptographic engine, individuals who are
trusted to not share the key-part information retrieve the parts and enter the
information into the cryptographic engine. The Master_Key_Process verb
supports this operation.

Entering the first and subsequent parts is authorized by two different control
points so that a cryptographic engine (the Coprocessor) can enforce that two
different roles, and thus profiles, are activated to install the master-key parts. Of
course this requires that roles exist that enforce this separation of responsibility.

Setting of the master key is also a unique command with its own control point.
Therefore you can set up the access-control system to require the participation
of at least three individuals or three groups of individuals.

You can check the contents of any of the master-key registers, and the key parts
as they are entered into the new master-key register, using the Key_Test verb.

Chapter 2. CCA Node-Management and Access-Control ~ 2-13

2-14

CCA Release 2.52

The verb performs a one-way function on the key-of-interest, the result of which
is either returned or compared to a known correct result.

Establishing a master key from an internally generated random value. The

Master_Key_Process verb can be used to randomly generate a new master-key
within the cryptographic engine. The value of the new master-key is not
available outside of the cryptographic engine.

This method, which is a separately authorized command invoked through use of
the Master_Key_Process verb, ensures that no one has access to the value of
the master key. Random generation of a master key is useful when the shares
technique described next is used, and when keys shared with other nodes are
distributed using public key techniques or when DES transport keys are
established between nodes. In these cases, there is no need to re-establish a
master key with the same value.

“Cloning” a master key from one cryptographic engine to another

cryptographic engine. In certain high-security applications, it is desirable to
copy a master key from one cryptographic engine to another without exposing
the value of the master key. The IBM 4758 CCA implementation supports
cloning the master key through a process of splitting the master key into n
shares, of which m shares, 1=m=n=<15, are required to reconstitute the master
key in another engine. The term “cloning” is used to differentiate the process
from “copying” because no one share, or any combination of fewer than m
shares, provide sufficient information needed to reconstitute the master key.

This secure master-key cloning process is supported by the Cryptographic Node
Management (CNM) utility. See Chapter 5 and Appendix F of the IBM 4758 PCI
Cryptographic Coprocessor CCA Support Program Installation Manual. That
utility can hold the certificates and shares in a “data base” that you can transport
on diskette between the various nodes:

e The certifying node public-key certificate

e The Coprocessor (master key) Share-Source node public-key certificate

e The Coprocessor (master key) Share-Receiving node public-key certificate
e The master-key shares.

You establish the 'm' and 'n' values through the use of the
Cryptographic_Facility_Control verb.

Shares of the current master-key are obtained using the Obtain mode of the
Master_Key_Distribution verb. The Receive mode of the
Master_Key_Distribution verb is used to enter an individual share into the
receiving (target) cryptographic-engine. When sufficient shares have been
entered, the verb returns status (return code 4, reason code 1024) that indicates
the cloned master-key is now complete within the new master-key register of the
target cryptographic-engine.

The master-key shares are signed by the source engine. Each signed share is
then triple-encrypted by a fresh triple-length DES key, the share-encrypting key.
A certified public-key from the target cryptographic-engine is validated, and the
share-encrypting key is wrapped (encrypted) using the public key from the
certificate.

At the target cryptographic-engine, an encrypted share and the wrapped
share-encrypting key are presented to the engine. The private key to unwrap
the share-encrypting key must exist within the cryptographic engine as a
“retained key” (a private key that never leaves the engine). This private key

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

must also have been marked as suitable for operation with the
Master_Key_Distribution verb when it was generated.

When receiving a share, you must also supply the share-signing key in a
certificate to the Master_Key_Distribution verb. The engine validates the
certificate, and uses the validated public key to validate the individual master-key
share.

The certificates used to validate the share-signing public key and the
target-engine public key used to wrap the share-encrypting key are validated by
the cryptographic engines using a retained public-key. A retained public-key is
introduced into a cryptographic engine in a two-part process using the
PKA_Public_Key_Hash_Register and PKA_Public_Key_Register verbs. This
allows you to establish two distinct roles to enforce dual control. Two different
individuals are authorized so that split authority and dual control can be enforced
in setting up the certificate validating public key.

You identify the nodes with unique 16-byte identifiers of your choice. The
environment ID (EID) is also established through the use of the
Cryptographic_Facility_Control verb.

The processing of a given share (share 1, 2, ..., n) requires authorization to a
distinct control point so that you can enforce split responsibility in obtaining and
installing the shares.

The certifying node can be either the share source or target node as you desire,
or can be an independent node that might be located in a cryptographic control
center.

Although not currently supported by IBM products, the shares could be stored on
intermediate devices (for example, smart cards), provided that the devices could
perform the required key-management and digital-signature functions.

With the current capabilities of the IBM 4758 CCA Support Program, you must
initialize the target Coprocessor with its retained private key and have the
associated public-key certified before you obtain shares for the target
Coprocessor. This implies that the target Coprocessor has been initialized and
is not reset before a master key is cloned to the Coprocessor.

Chapter 2. CCA Node-Management and Access-Control ~ 2-15

2-16

CCA Release 2.52

CERT{SA

Share-Administration Control Point

}(SA) H(CERT{SA}(SA))

CCA Cryptographic Engine

(Primary = 'a')

1 «<— Roles, Prof
m_of_n, EID

2 — Audit

CCA Cryptographic Engine
('b")

les, Roles, Profiles,—/8 1
m_of_n, EID

Audit «—— 2

4 < > 4

| | |
5 « > 5

Certify by SA
Gererate CSS 6 ———»Pu{CSS}
<«CERT{SA} (Pu{CSS})
Pu{CSR i}«——— 7 Generate CSR
CERT{SA} (Pu{CSR_i})—>

8 <

exSE_j

——»Pu{CSR_i} (SE_j),

(3,mks_j,SIG{CSS}(3,mks_j))—> 9
(m times) |

>

Set and Verify — 10
the master key +——

Figure 2-2. Coprocessor-to-Coprocessor Master-Key Cloning

Figure 2-2 depicts the steps of a master-key cloning scenario. These steps

include:

1. Install appropriate access-control roles and profiles, m-of-n, and EID values.
Have operators change their profile passwords. Ensure that the roles provide
the degree of responsibility-separation that you require.

2. Audit the setup of the Share Administration, Share Source, and Share

Receiving nodes.

3. Generate a retained RSA private key, the Share-Administration (SA) key. This

key is used to certify the public
key. Distribute the hash of this
node(s) under dual control.

4. Install (register) the hash of the
nodes.

keys used in the scheme. Self-certify the SA
certificate to the source and share-receiving

SA public-key in both the source and receiving

5. Install (register) the SA public-key in both the source and receiving nodes. Two
different roles can be used to permit this and the prior step to aid in ensuring
dual control of the cloning process.

6. In the source node, generate a

retained key usable for master-key

administration, the Coprocessor Share Signing (CSS) key, and have this key

certified by the SA key.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

7. In the target node, generate a retained key usable for master-key
administration, the Coprocessor Share Receiving (CSR) key, and have this key
certified by the SA key.

8. Once a master key has been established in the source node, perhaps through
random master-key generation, obtain shares of the master key. Also obtain
master-key verification information for use in step 10 using the Key_Test verb.
Note that generally fewer shares are required to reconstitute the master key
than that which can be obtained from the source node. Thus corruption of
some of the information that is in transit between source and target can be
tolerated.

9. Deliver and install the master-key shares.

10. Verify that the new master-key in the target node has the proper value. Then
set the master key.

Master-Key Considerations with Multiple CCA Coprocessors

Master keys are used to wrap (encrypt) working keys (as opposed to clear keys or
keys wrapped by key-encrypting keys or RSA keys). Master-key-wrapped keys are
either stored in the CCA key storage, or are held and managed by your
application(s). When multiple Coprocessors are installed, it is a responsibility of the
using organization(s) to ensure that appropriate current and old master-keys, both
symmetric and asymmetric, are installed in the multiple Coprocessors. The most
straightforward approach is to ensure that when you change (“set”) master keys on
one CCA Coprocessor, you also change the master keys (both asymmetric and
symmetric) on the other Coprocessor(s).

The approach to multiple Coprocessors differs in detail between OS/400 and the
workstation environments. Each type of environment is discussed:

e 0S/400
e AIX and Windows.

0S/400 Multi-Coprocessor Master-Key Support: |IBM recommends loading all
CCA Coprocessors with the same current and the same old master-keys, especially
if your applications perform load balancing among the Coprocessors or if the
Coprocessors will be used for SSL.

With OS/400, multiple key-storage files can exist. To avoid confusion, keep all
keys in the key-storage files encrypted by a common, current master-key. The
master-key verification pattern is not stored in the header record of any key-storage
file. Therefore, it is important that when you change the master key, you
re-encipher all of the keys in all of your key-storage files. The organization that
manages all users of the Coprocessors must arrange procedures for keeping all
key-storage files up to date with the applicable current master-key. Note that the
person changing the master key may not have authorization to (or knowledge of) all
key-storage files on the system.

The order of loading and setting of the master key between Coprocessors is not
significant. However, be sure that after all Coprocessor master-keys have been
updated that you then update all key-storage files. Remember that if you import a
key or generate a key, it is returned encrypted by the current master-key within the
Coprocessor used for the task.

Chapter 2. CCA Node-Management and Access-Control 2=17

2-18

CCA Release 2.52

AIX and Windows Multi-Coprocessor Master-Key Support: It is a general
recommendation that all of the CCA Coprocessors within the system use the same
current and old master keys. When setting a new master-key, it is essential that all
of the changes are performed by a single program running on a single thread. If
the thread-process is ended before all of the Coprocessor master-keys are
changed, significant complications can arise. It is suggested that you start the
CNM utility and use it to make all of the changes before you end the utility.

If you fail to change all of the master keys with the same program running on the
same thread, either because there is an unplanned interruption, or perhaps
because you intend to have different master keys between Coprocessors, you need
to understand the design of the CCA host code that is described next.

CCA Host Code Design: (AIX and Windows) CCA keeps a copy of the symmetric
or the asymmetric current-master-key verification pattern in the key-storage header
records. This information is used to ensure that a given key-storage file is
associated with a Coprocessor having the same current master-key. This can
prevent accessing an out-of-date key-storage backup file. The verification pattern
is written into the header record when key storage is initialized, and when the
current master-key is changed in a Coprocessor.

CCA also keeps two flags in memory associated with a host-processing thread. If
there are multiple threads, each thread has its own set of flags. The flags,
symmetric-directory-open (SDO) and asymmetric-directory-open (ADO), are set to
false when CCA processing begins on the thread.

When a CCA verb is called and a key storage is referenced, and if the associated
flag (SDO or ADO) is false, CCA obtains the verification pattern for the current
master-key and compares this to the header-record information. If the patterns
match, the flag is set to true, and processing continues. If the existing patterns do
not match, processing is terminated with an error indication. If there is no current
master-key or if key storage has not been initialized, processing continues
although, depending on the CCA verb, other error conditions may arise.

A key-storage reference occurs in two cases:

1. When the verb call employs a key label
2. When the SET master-key option is used on the Master_Key_Process verb.

Situations to Consider: Given the design of the host code, when you employ
multiple Coprocessors with CCA, you should consider the following cases in regard
to master keys. Remember that if you explicitly manage the symmetric or the
asymmetric master keys (using the SYM-MK or ASYM-MK keywords on the
Master_Key_Process verb), you have both master keys and both key storages to
consider. If you do not explicitly manage the two classes of master keys, then the
implementation will operate as though there is a single set of master keys. The
CNM utility provided with the CCA Support Program does not explicitly manage the
two sets of keys and the program design assumes that the master keys have
always been managed without explicit reference to the symmetric or the
asymmetric keys.

Setting master keys in multiple Coprocessors.
If, as recommended, you keep the master keys the same in all of the CCA
Coprocessors, and you set the master key in each of the Coprocessors from a
single program running on the same thread, the following will take place:

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

e When all of the Coprocessors are newly initialized, that is, their
current-master-key registers are empty, first install the same master key in
each of the new-master-key registers. Then set the master key in each of
the Coprocessors. Finally, if you are going to use key storage, initialize
key storage.

« [f all of the Coprocessors have the same current master-key, when you
undertake to set the master key in the first Coprocessor, the code will
attempt to set the directory-open flags (SDO and ADO). This should
succeed if you have the proper key-storage files (or key storage is not
initialized). Note that the verification pattern in the key-storage header is
changed as soon as the first master-key is set.

When you set the master key in the additional Coprocessors, because the
directory-open flags are already set, no check is made to ensure that the
verification patterns in key storage and for the current-master-key match
(and they would not match because the header was updated when the
first Coprocessor master-key was set). As soon as the master key is set,
its verification pattern will be copied to the header in key storage.

Note that the key in the new-master-key register is not verified. You may
wish to confirm the proper and consistent contents of these registers
using the key-test service prior to undertaking setting of the master keys.

Setting the master key in a Coprocessor after other Coprocessor(s) are

successfully in operation.

If you have one or more Coprocessors in operation and then wish to add an
additional Coprocessor and need to set its current, and possibly old, master
keys to the keys already in the other Coprocessors, special care must be
taken. Two cases should be considered:

1. If the new Coprocessor has a current master-key that is not the same as
that in the other Coprocessors, and if key storage is initialized for use with
the other Coprocessors, when you start a new thread and attempt to set
the master key, the action will fail unless you take precautions. Because
the directory-open flag(s) are initially set to false, the CCA host code will
compare the verification pattern for the current master-key in the
Coprocessor and in the key-storage header record. This comparison will
fail and processing will terminate with an error indication.

2. If the new Coprocessor did not have a key in the current master-key
register, the set-master-key operation would proceed. Note that the
verification pattern for this master key will be copied to an initialized
key-storage header record.

A solution to the first situation is to proceed as follows:

e Allocate a Coprocessor that has the desired current master key(s)

e Perform a DES_Key_Record_List or other action that will cause the
key-storage-valid flag(s) to be set.

¢ Deallocate the Coprocessor

¢ Allocate the new Coprocessor

e Set the master key.

Note that you may need to install two master keys into the new Coprocessor
in order have both the current and the old master-keys agree with those in the
other Coprocessor(s).

Chapter 2. CCA Node-Management and Access-Control ~ 2-19

CCA Release 2.52

Intentionally using different master keys in a set of Coprocessors.
This situation becomes very complicated if you are using key storage with a
subset of the Coprocessors. The preceding discussion provides information
that you can use to manage this case. If you are not using key storage and
have not initialized key storage files, then the situation is quite simple. Just
load and set the master keys as you would in a single-Coprocessor situation.

Note that while you are changing master keys in a multiple-Coprocessor
arrangement, it may be undesirable to continue other cryptographic processing.
Several problems should be considered:

1. Keys generated or imported and returned enciphered with the latest master key
are not usable with other Coprocessors until they too have been updated with
the latest master key. Existing keys may still be usable since the previous
master key in the updated Coprocessor(s) will be in the old master-key register
and CCA can use this to recover the working keys.

2. The header record in the key-storage file may have been altered to an
undesirable value--refer to the earlier discussion.

3. If you set the master key without specifically mentioning symmetric or
asymmetric keys (this is the way the CNM utility operates), and if you are using
key storage, you will need to have both the symmetric and the asymmetric key
storage files initialized, even if you do not place keys in one or both of the key
storages files.

2-20 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Access_Control_Initialization

Access_Control_lInitialization (CSUAACI)

Platform/ 0s/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X
The Access_Control_lInitialization verb is used to initialize or update parameters
and tables for the Access-Control system in the 4758 Cryptographic Coprocessor.
You can use this verb to perform the following services:
e Load roles and user profiles
e Change the expiration date for a user profile
* Change the authentication data, such as a passphrase, in a user profile
* Reset the authentication failure count in a user profile.
You select which service to perform by specifying the corresponding keyword in the
input rule-array. You can only perform one of these services per verb call.
Restrictions
None
Format
CSUAACI
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one, two, or three
rule_array Input String rule_array_count * 8 bytes
array
verb_data_1_length Input Integer
verb_data_1 Input String verb_data_1_length bytes
verb_data_2_length Input Integer
verb_data_2 Input String verb_data_2_length bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one,
two, or three for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Chapter 2. CCA Node-Management and Access-Control ~ 2-21

Access_Control_Initialization CCA Release 2.52

Keyword Meaning

Function to perform (one required)

INIT-AC Initializes roles and user profiles.
CHGEXPDT Changes the expiration date in a user profile.
CHG-AD Changes authentication data in a user profile or changes a

user's passphrase.

Note: The PROTECTD keyword must also be used
whenever you use CHG-AD. You must authenticate yourself
before you are allowed to change authentication data, and the
use of protected mode verifies that you have been
authenticated.

RESET-FC Resets the count of consecutive failed logon attempts for a
user. Clearing the failure count permits a user to log on
again, after being locked out due to too many failed
consecutive attempts.

Options (one or two, optional)

PROTECTD Specifies to operate in protected mode. Data sent to the
Coprocessor is protected by encrypting the data with the
user's session key, Kg.

If the user has not successfully logged on, there is no session
key in effect, and the PROTECTD keyword will result in an
abnormal termination.

REPLACE Specifies that a new profile can replace an existing profile with
the same name. This keyword applies only when the rule
array contains the INIT-AC keyword.

Without the REPLACE keyword, any attempt to load a profile
which already exists will be rejected. This protects against
accidentally overlaying a user's profile with one for a different
user who has chosen the same profile ID as one that is
already on the Coprocessor.

verb_data_1_length
The verb_data_1_length parameter is a pointer to an integer variable containing
the number of bytes of data in the verb_data_1 variable.

verb_data_1
The verb_data_1 parameter is a pointer to a string variable containing data
used by the verb.

This field is used differently depending on the function being performed.

Rule-Array Contents of verb_data_1 field

Keyword

INIT-AC The field contains a list of zero or more user profiles to be
loaded into the Coprocessor. See “Profile Structure” on
page B-32.

CHGEXPDT, The field contains the eight-character profile ID for the user

CHG-AD, or profile that is to be modified.

RESET-FC

2-22 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Access_Control_Initialization

verb_data_length_2

The verb_data_length_2 parameter is a pointer to an integer variable containing
the number of bytes of data in the verb_data_2 variable.

verb_data_2

The verb_data_2 parameter is a pointer to a string variable containing data
used by the verb. Authentication data structures are described in
“Access-Control Data Structures” on page B-28.

This field is used differently depending on the function being performed.

Rule-Array Contents of verb_data_2 field

Keyword

INIT-AC The field contains a list of zero or more roles to be loaded into
the Coprocessor. See “Role Structure” on page B-29.

CHGEXPDT The field contains the new expiration date to be stored in the

specified user profile. The expiration date is an
eight-character string, in the form YYYYMMDD.

CHG-AD The field contains the new authentication-data, to be used in
the specified user profile.

If the profile currently contains authentication data for the
same authentication mechanism, that data is replaced by the
new data. If the profile does not contain authentication data
for the mechanism, the new data is added to the data
currently stored for the specified profile.

RESET-FC The verb_data_2 field is empty. lts length is zero.

Required Commands

The Access_Control_lInitialization verb requires the following commands to be
enabled:

Initialize the access-control system roles and profiles (offset X'0112') with the
INIT-AC keyword. See “Profile Structure” on page B-32.

Change the expiration date in a user profile (offset X'0113"') with the
CHGEXPDT keyword.

Change the authentication data in a user profile (offset X'0114') with the
CHG-AD keyword.

Reset the logon failure count in a user profile (offset X'0115") with the
RESET-FC keyword.

Chapter 2. CCA Node-Management and Access-Control ~ 2-23

Access_Control_Maintenance CCA Release 2.52

Access_Control_Maintenance (CSUAACM)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Access_Control_Maintenance verb is used to query or control installed roles
and user profiles.
You can use this verb to perform the following services:

¢ Retrieve a list of the installed roles or user profiles

* Retrieve the non-secret data for a selected role or user profile

» Delete a selected role or user profile from the Coprocessor

» Retrieve a list of the users who are logged on to the Coprocessor.

You select which service to perform by specifying the corresponding keyword in the
input rule-array. You can only perform one of these services per verb call.

None

CSUAACM

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

name Input String 8 bytes

output_data_length In/Output Integer

output_data Output String output_data_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

2-24 BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Access_Control_Maintenance

Keyword

Meaning

Function to perform (one required)

LSTPROFS

Retrieves a list of the user profiles currently installed in the
Coprocessor.

Keyword Q-NUM-RP shows how to determine how much data
this request will return to the application program.

LSTROLES

Retrieves a list of the roles currently installed in the
Coprocessor.

Keyword Q-NUM-RP shows how to determine how much data
this request will return to the application program.

GET-PROF

Retrieves the non-secret part of a specified user profile.

GET-ROLE

Retrieve the non-secret part of a role definition from the
Coprocessor.

DEL-PROF

Deletes a specified user profile.

DEL-ROLE

Deletes a specified role definition from the Coprocessor.

Q-NUM-RP

Queries the number of roles and profiles presently installed in
the Coprocessor. This allows the application program to know
how much data will be returned with the LSTROLES or
LSTPROFS keywords.

Q-NUM-UR

Queries the number of users currently logged on to the
Coprocessor. This allows the application program to know
how much data will be returned with the LSTUSERS keyword.

Users may log on or log off between the time you use
Q-NUM-UR and the time you use LSTUSERS, so the list of
users may not always contain exactly the number the
Coprocessor reported was logged on.

LSTUSERS

Retrieves a list of the profile IDs for all users who are
currently logged on to the Coprocessor.

name

The name parameter is a pointer to a string variable containing the name of a
role or user profile which is the target of the request.

This field is used differently depending on the function being performed.

Rule-Array Contents of name variable

Keyword

LSTPROFS, The name field is unused.

LSTROLES,

Q-NUM-RP,

Q-NUM-UR, or

LSTUSERS

GET-PROF or The name field contains the eight-character profile ID for the
DEL-PROF user profile that is to be retrieved or deleted.

GET-ROLE or The name field contains the eight-character role ID for the role
DEL-ROLE definition that is to be retrieved or deleted.

Chapter 2. CCA Node-Management and Access-Control ~ 2-25

Access_Control_Maintenance CCA Release 2.52

2-26

output_data_length

The output_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the output_data variable. The value must be a
multiple of four bytes.

On input, the output_data_length variable must be set to the total size of the
variable pointed to by the output_data parameter. On output, this variable will
contain the number of bytes of data returned by the verb in the output_data
variable.

output_data

The output_data parameter is a pointer to a string variable containing data
returned by the verb. Any integer value returned in the oufput_data field is in
big-endian format; the high-order byte of the value is in the lowest-numbered
address in storage. Authentication data structures are described in
“Access-Control Data Structures” on page B-28.

This field is used differently depending on the function being performed.

Rule-Array Contents of oufput_data Variable

Keyword

LSTPROFS Contains a list of the profile IDs for all the user profiles stored
in the Coprocessor.

LSTROLES Contains a list of the role IDs for all the roles stored in the
Coprocessor.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Access_Control_Maintenance

Rule-Array Contents of output_data Variable
Keyword
GET-PROF Contains the non-secret portion of the selected user profile.

This includes the following data, in the order listed.

Profile version Two bytes containing 2 one-byte integer
values, where the first byte contains the major
version number and the second byte contains the
minor version number.

Comment A 20-character field, padded on the right with
spaces, which describes the profile. This field is
not X'00' terminated.

Role The eight-character name of the user's assigned
role.

Logon failure count A one-byte integer containing the
number of consecutive failed logon attempts by the
user.

Pad A one-byte padding value containing X'00".

Activation date The first date on which the profile is valid.
The date consists of a two-byte integer containing
the year, followed respectively by a one-byte
integer for the month and a one-byte integer for the
day of the month.

Expiration date The last date on which the profile is valid.
The format is the same as the Activation date
described above.

List of enrolled authentication mechanism information For
each authentication mechanism associated with the
profile, the verb returns a series of three integer
values:

1. The two-byte Mechanism ID
2. The two-byte Mechanism Strength

3. The four-byte authentication data Expiration
date, which has the same format as the
Activation date described above.

Note that the authentication data itself is not returned, only the
IDs, strength, and expiration date of the data are returned.

Chapter 2. CCA Node-Management and Access-Control ~ 2-27

Access_Control_Maintenance CCA Release 2.52

Rule-Array Contents of output_data Variable
Keyword
GET-ROLE The field contains the non-secret portion of the selected role.

This includes the following data, in the order listed.

Role version Two bytes containing integer values, where the
first byte contains the major version number and
the second byte contains the minor version
number.

Comment A 20-character field, padded with spaces,
containing a comment which describes the role.
This field is not X'00' terminated.

Required authentication-strength level A two-byte integer
defining how secure the user authentication must
be in order to authorize this role.

Lower time-limit The earliest time of day that this role can be
used. The time limit consists of two integer values,
a one-byte hour, followed by a one-byte minute.
The hour can range from 0-23, and the minute can
range from 0-59.

Upper time-limit The latest time of day that this role can be
used. The format is the same as the Lower
time-limit.

Valid days of the week A one-byte field defining which days
of the week this role can be used. Seven bits of
the byte are used to represent Sunday through
Saturday, where a '1' bit means that the day is
allowed, while a '0' bit means it is not.

The first bit (MSB) is for Sunday, and the last bit
(LSB) is unused and is set to zero.

Access-control-point list The access-control-point bit map
defines which functions a user with this role is
permitted to run.

DEL-PROF or The variable is empty. Its length is zero.
DEL-ROLE
Q-NUM-RP The variable contains an array of two four-byte integers. The

first integer is the number of roles currently loaded with use of
the Access_Control_lInitialization verb, while the second
integer is the number of user profiles currently loaded with use
of the same verb.

Q-NUM-UR The variable contains a single integer value which indicates
the number of users currently logged on to the Coprocessor.

LSTUSERS The variable contains an array of eight-character profile IDs,
one for each user currently logged on to the Coprocessor.
The list is not in any meaningful order.

2-28 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Access_Control_Maintenance

Required Commands

The Access_Control_Maintenance verb requires the following commands to be
enabled in the hardware:

* Read public access-control information (offset X'0116') with the LSTPROFS,
LSTROLES, GET-PROF, GET-ROLE, and Q-NUM-RP keywords

e Delete a User Profile (offset X'0117") with the DEL-PROF keyword
e Delete a Role (offset X'0118') with the DEL-ROLE keyword.

Chapter 2. CCA Node-Management and Access-Control ~ 2-29

Cryptographic_Facility_Control CCA Release 2.52

Cryptographic_Facility_Control (CSUACFC)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Use the Cryptographic_Facility_Control verb to perform the following services:
 Reinitialize the CCA application in the Coprocessor.
e Set the date and time in the Coprocessor clock.
* Reset the Coprocessor Intrusion Latch (see page 2-10)
* Reset the Coprocessor Battery-Low Indicator (see page 2-10)

* Load or clear the Function Control Vector, which defines limitations on the
cryptographic functions available in the Coprocessor.

e Establish the environment identifier (EID), which is a user-defined identifier.
Once set, the EID can only be set again following a CCA reinitialization.

e Establish the minimum and maximum number of “cloning information” shares
that are required and that can be used to pass sensitive information from one
Coprocessor to another Coprocessor.

Select which service to perform by specifying the corresponding keyword in the
input rule-array. You can only perform one of these services per verb call.

Restrictions
Use only these characters in an environment identifier (EID): A...Z, a...z, 0...9, and
these additional characters relating to different character symbols in the various
national language character sets as listed below:
ASCII EBCDIC USA Graphic
Systems Systems (for reference)
X'20' X'40' space character
X'26' X'50' &
X'3D! X'7E! =
X'40' X'7C! @
The alphabetic and numeric characters should be encoded in the normal character
set for the computing platform that is in use, either ASCII or EBCDIC.
Format
CSUACFC
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one or two
rule_array Input String rule_array_count * 8 bytes
array
verb_data_length In/Output Integer
verb_data In/Output String verb_data_length bytes

2-30 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Parameters

Cryptographic_Facility_Control

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or

two for this verb.

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters.

This verb requires two keywords in the rule array. One specifies the
Coprocessor for which the request is intended, the other specifies the function
to perform. No rule-array elements are set by the verb. The rule_array
keywords are shown below:

Keyword

Meaning

Coprocessor to use (optional)

ADAPTER1

This keyword is ignored. It is accepted for backward
compatibility.

Control function to perform (one required)

RQ-TOKEN

Requests a random eight-byte token from the adapter, which
is returned in the verb_data variable. This is the first step
when reinitializing the Coprocessor.

The second step for reinitialization uses RQ-REINT, described
below.

RQ-REINT

Reinitializes the CCA application in the Coprocessor. For
RQ-REINT, you must set the verb_data field to the one's
complement of the token that was returned by the
Coprocessor when you executed the verb using the
RQ-TOKEN keyword. This is the second and final step when
reinitializing the Coprocessor.

This two-step process provides protection against accidental
reinitialization of the Coprocessor.

SETCLOCK

Sets the date and time of the Coprocessor's secure clock.

You must put the date and time values in the verb_data
variable, as described under the description of that parameter.

RESET-IL

Clears the Intrusion Latch on the Coprocessor.

RESETBAT

Clears the Battery-Low Indicator (latch) on the Coprocessor.

LOAD-FCV

Loads a new Function Control Vector into the Coprocessor.

CLR-FCV

Clears the Function Control Vector from the Coprocessor.

SET-EID

Sets an environment identifier (EID) value.

SET-MOFN

Sets the minimum and maximum number of “cloning
information” shares that are required and that can be used to
pass sensitive information from one Coprocessor to another
Coprocessor.

Chapter 2. CCA Node-Management and Access-Control ~ 2-31

Cryptographic_Facility_Control CCA Release 2.52

2-32

verb_data_length
The verb_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the verb_data variable. On input, specify the
size of the variable. The verb updates the variable with the size of the returned
data.

verb_data
The verb_data parameter is a pointer to a string variable containing data used
by the verb on input, or generated by the verb on output.

This field is used differently depending on the value of the control function
selected by a rule-array keyword.

e For RQ-TOKEN, verb_data is an output parameter. It receives an

eight-byte randomly generated value, which the application uses with the
RQ-REINT keyword on a subsequent call.

On input, the verb_data_length variable must contain the length of the
buffer addressed by the verb_data pointer. Allocate an eight-byte buffer
and specify this length in the verb_data_length variable.

For RQ-REINT, verb_data is an input parameter. You must set it to the
one's complement of the token you received as a result of the RQ-TOKEN
call. Allocate an eight-byte buffer and specify this length in the
verb_data_length variable.

For SETCLOCK, verb_data is an input variable. It must contain a
character string which contains the current GMT date and time. Allocate a
16-byte buffer and specify this length in the verb_data_length variable.
This string has the form YYYYMMDDHHmmMSSWW, where these fields are
defined as follows.

YYYY The current year

MM The current month, from 01 to 12

DD The current day of the month, from 01 to 31

HH The current hour of the day, from 00 to 23

mm The current minutes past the hour, from 00 to 59
SS The current seconds past the minute, from 00 to 59

WW The current day of the week, where Sunday is represented as 01,
and Saturday by 07.

For LOAD-FCV, verb_data is an input variable. It must contain a character
string which contains the function control vector (FCV) as described in
“Function Control Vector” on page B-42. Allocate a 204-byte buffer and
specify this length in the verb_data_length variable.

For CLR-FCV, no data is provided and the verb_data_length variable
should be set to zero.

For SET-EID, verb_data is an input variable. The variable contains a
16-byte environment identifier, or EID, value. This identifier is used in
verbs such as PKA_Key_Generate and PKA_Symmetric_Key_Import. See
“Restrictions” on page 2-30 for a list of valid characters in an environment
identifier. Allocate a 16-byte buffer and specify this length in the
verb_data_length variable.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Cryptographic_Facility_Control

e For SET-MOFN, verb_data is an input variable. The variable contents
establish the minimum and maximum number of “cloning information”
shares that are required and that can be used to pass sensitive information
from one Coprocessor to another Coprocessor. The verb_data variable
contains a two-element array of integers. The first element is the m
minimum required number of shares to reconstruct cloned information (see
the Master_Key_Distribution verb). The second element is the n maximum
number of shares that can be issued to reconstruct cloned information (see
the Master_Key_Distribution verb). Allocate an eight-byte buffer (two,
four-byte integers) and specify this length in the verb_data_length variable.

Required Commands
The Cryptographic_Facility_Control verb requires the following commands to be
enabled in the hardware:

» Reinitialize Device (offset X'0111"') with the RQ-TOKEN, RQ-REINT keywords
e Set Clock (offset X'0110"') with the SETCLOCK keyword

e Reset Intrusion Latch (offset X'010F') with the RESET-IL keyword

* Reset Battery-LOW Indicator (offset X'030B') with the RESETBAT keyword

e Load a Function Control Vector (offset X'0119") with the LOAD-FCV keyword
¢ Clear the Function Control Vector (offset X'011A") with the CLR-FCV keyword
e Set EID command (offset X'011C"') with the SET-EID keyword

e Initialize Master Key Cloning command (offset X'011D") with the SET-MOFN
keyword.

Chapter 2. CCA Node-Management and Access-Control ~ 2-33

Cryptographic_Facility_Query CCA Release 2.52

Cryptographic_Facility_Query (CSUACFQ)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Cryptographic_Facility_Query verb is used to retrieve information about the
Cryptographic Coprocessor and the CCA application program in that Coprocessor.
This information includes the following:

e General information about the Coprocessor

¢ General information about the CCA application program in the Coprocessor
Status of master-key shares distribution

¢ Environment identifier, EID

e Diagnostic information from the Coprocessor

e Export-control information from the Coprocessor

e Time and date information.

On input, you specify:

e A rule-array count of one or two
¢ Optionally a rule-array keyword of ADAPTER1
e The class of information queried with a rule-array keyword.

The verb returns information elements in the rule array and sets the
rule-array-count variable to the number of returned elements.

You cannot limit the number of returned rule-array elements. Figure 2-3 on
page 2-35 describes the number and meaning of the information in output
rule-array elements. You are advised to allocate a minimum of 30 rule-array
elements to allow for extensions of the returned information.

CSUACFQ

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length

rule_array_count In/Output Integer one or two on input

rule_array In/Output String rule_array_count * 8 bytes
array

verb_data_length In/Output Integer

verb_data In/Output String verb_data_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. On input, the value must be
one or two for this verb.

2-34 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Cryptographic_Facility_Query

On output, the verb sets the variable to the number of rule-array elements it
returns to the application program.

Note: With this verb, the number of returned rule-array elements can exceed
the rule-array count that you specified on input. Be sure that you allocate
adequate memory to receive all of the information elements according to the
information class that you select on input with the information-to-return keyword
in the rule-array.

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters.

On input, set the rule array to specify the type of information to retrieve. There
are two input rule_array elements, as described below.

Keyword Meaning

Adapter to use (optional)

ADAPTER1 This keyword is ignored. It is accepted for backward
compatibility.

Information to return (one required)

STATCCA Gets CCA-related status information.

STATCCAE Gets CCA-related extended status information.

STATCARD Gets Coprocessor-related basic status information.

STATDIAG Gets diagnostic information.

STATEID Gets the environment identifier, EID.

STATEXPT Gets function control vector-related status information.

STATMOFN Gets master-key shares distribution information.

TIMEDATE Reads the current date, time, and day of the week from the
secure clock within the Coprocessor.

The format of the output rule-array depends on the value of the rule-array
element which identifies the information to be returned. Different sets of
rule-array elements are returned depending on whether the input keyword is
STATCCA, STATCCAE, STATCARD, STATDIAG, STATEID, STATEXPT, or
STATMOFN, TIMEDATE.

For rule-array elements that contain numbers, those numbers are represented
by numeric characters which are left-justified and padded on the right with
space characters. For example, a rule-array element which contains the
number two will contain the character string “2

On output, the rule-array elements can have the values shown in the table
below.

Chapter 2. CCA Node-Management and Access-Control ~ 2-35

Cryptographic_Facility_Query CCA Release 2.52

Figure 2-3 (Page 1 of 7). Cryptographic_Facility_Query Information Returned in
the Rule Array

Element Name Description
Number

Output rule-array for option STATCCA

1 NMK Status State of the New Master-Key register:

¢ One means the register is clear

e Two means the register contains a partially
complete key

e Three means the register contains a
complete key.

2 CMK Status State of the Current Master-Key register:

¢ One means the register is clear
e Two means the register contains a key.

3 OMK Status State of the Old Master-Key register:

¢ One means the register is clear
e Two means the register contains a key.

4 CCA Application A character string that identifies the version of
Version the CCA application program that is running in

the Coprocessor.
5 CCA Application A character string containing the build date for
Build Date the CCA application program that is running in

the Coprocessor.

6 User Role A character string containing the Role identifier
which defines the host application user's
current authority.

2-36 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Cryptographic_Facility_Query

Figure 2-3 (Page 2 of 7). Cryptographic_Facility_Query Information Returned in
the Rule Array

Element
Number

Name

Description

Output rule-array for option STATCCAE

1

Symmetric NMK
Status

State of the Symmetric New Master-Key
register:

¢ One means the register is clear

e Two means the register contains a partially
complete key

e Three means the register contains a
complete key.

2 Symmetric CMK State of the Symmetric Current Master-Key
Status register:
¢ One means the register is clear
* Two means the register contains a key.
3 Symmetric OMK State of the Symmetric Old Master-Key
Status register:
¢ One means the register is clear
* Two means the register contains a key.
4 CCA Application A character string that identifies the version of
Version the CCA application program that is running in
the Coprocessor.

5 CCA Application A character string containing the build date for

Build Date the CCA application program that is running in
the Coprocessor.

6 User Role A character string containing the Role identifier
which defines the host application user's
current authority.

7 Asymmetric NMK State of the Asymmetric New Master-Key

Status register:
¢ One means the register is clear
e Two means the register contains a partially
complete key
e Three means the register contains a
complete key.
8 Asymmetric CMK State of the Asymmetric Current Master-Key
Status register:
¢ One means the register is clear
e Two means the register contains a key.
9 Asymmetric OMK State of the Asymmetric Old Master-Key

Status

register:

¢ One means the register is clear
e Two means the register contains a key.

Chapter 2. CCA Node-Management and Access-Control

2-37

Cryptographic_Facility_Query

CCA Release 2.52

Figure 2-3 (Page 3 of 7). Cryptographic_Facility_Query Information Returned in

the Rule Array

Element Name Description

Number

Output rule-array for option STATCARD

1 Number of Installed The number of active Cryptographic
Adapters Coprocessors installed in the machine. Note

that this only includes Coprocessors that have
CCA software loaded (including those with CCA
UDX software). Non-CCA Coprocessors are
not included in this number.

2 DES Hardware A numeric character string containing an

Level integer value identifying the version of DES
hardware that is on the Coprocessor.

3 RSA Hardware A numeric character string containing an

Level integer value identifying the version of RSA
hardware that is on the Coprocessor.

4 POST Version A character string identifying the version of the
Coprocessor's Power-On Self Test (POST)
firmware.

The first four characters define the POSTO
version, and the last four characters define the
POST1 version.
5 Coprocessor A character string identifying the operating
Operating System system firmware on the Coprocessor.
Name
6 Coprocessor A character string identifying the version of the
Operating System Coprocessor's operating system firmware.
Version
7 Coprocessor Part A character string containing the
Number eight-character part number identifying the
version of the Coprocessor.

8 Coprocessor EC A character string containing the

Level eight-character EC (Engineering Change) level
for this version of the Coprocessor.

9 Miniboot Version A character string identifying the version of the
Coprocessor's Miniboot firmware. This
firmware controls the loading of programs into
the Coprocessor.

The first four characters define the MiniBootO
version, and the last four characters define the
MiniBoot1 version.

10 CPU Speed A numeric character string containing the
operating speed of the microprocessor chip, in
Megahertz.

11 Adapter ID A unique identifier manufactured into the

Also see element Coprocessor. The Coprocessor's Adapter ID is

number 15. an eight-byte binary value where the
high-order byte is X'78' for an IBM 4758-001
and 4758-013, and is X'71"' for an IBM
4758-002 and 4758-023. The remaining bytes
are a random value.

2-38 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Cryptographic_Facility_Query

Figure 2-3 (Page 4 of 7). Cryptographic_Facility_Query Information Returned in
the Rule Array

Element
Number

Name

Description

12

Flash Memory Size

A numeric character string containing the size
of the flash EPROM memory on the
Coprocessor, in 64-kilobyte increments.

13

DRAM Memory
Size

A numeric character string containing the size
of the dynamic RAM (DRAM) memory on the
Coprocessor, in kilobytes.

14

Battery-Backed
Memory Size

A numeric character string containing the size
of the battery-backed RAM on the Coprocessor,
in kilobytes.

15

Serial Number

A character string containing the unique serial
number of the Coprocessor. The serial number
is factory installed and is also reported by the
CLU utility in a Coprocessor-signed status
message.

Output rule-array for option STATDIAG

1

Battery State

A numeric character string containing a value
which indicates whether the battery on the
Coprocessor needs to be replaced:

¢ One means that the battery is good
e Two means that the battery should be
replaced.

Intrusion Latch
State

A numeric character string containing a value
which indicates whether the Intrusion Latch on
the Coprocessor is set or cleared:

¢ One means that the latch is cleared
¢ Two means that the latch is set.

Error Log Status

A numeric character string containing a value
which indicates whether there is data in the
Coprocessor CCA error log:

¢ One means that the error log is empty

e Two means that the error log contains data,
but is not yet full

* Three means that the error log is full, and
cannot hold any more abnormal termination
data.

Mesh Intrusion

A numeric character string containing a value to
indicate whether the Coprocessor has detected
tampering with the protective mesh that
surrounds the secure module. This indicates a
probable attempt to physically penetrate the
module:

¢ One means no intrusion had been detected
e Two means an intrusion attempt detected.

Chapter 2. CCA Node-Management and Access-Control ~ 2-39

Cryptographic_Facility_Query CCA Release 2.52

Figure 2-3 (Page 5 of 7). Cryptographic_Facility_Query Information Returned in
the Rule Array

Element Name Description
Number
5 Low Voltage A numeric character string containing a value to
Detected indicate whether a power supply voltage was

below the minimum acceptable level. This may
indicate an attempt to attack the security
module:

¢ One means only acceptable voltages have
been detected

e Two means a voltage has been detected
below the low-voltage tamper threshold.

6 High Voltage A numeric character string containing a value to
Detected indicate whether a power supply voltage was
above the maximum acceptable level. This
may indicate an attempt to attack the security
module:

¢ One means only acceptable voltages have
been detected

e Two means a voltage has been detected
above the high-voltage tamper threshold.

7 Temperature A numeric character string containing a value to
Range Exceeded indicate whether the temperature in the secure
module was outside of the acceptable limits.
This may indicate an attempt to obtain
information from the module:

¢ One means the temperature is acceptable
e Two means the temperature has been
detected outside of an acceptable limit.

8 Radiation Detected A numeric character string containing a value to
indicate whether radiation was detected inside
the secure module. This may indicate an
attempt to obtain information from the module:

¢ One means no radiation has been detected
¢ Two means radiation has been detected.

9, 11, Last Five These five rule-array elements contain the last
13, 15, Commands Run five commands that were executed by the
17 Coprocessor CCA application. They are in

chronological order, with the most recent
command in element 9. Each element contains
the security APl command code in the first four
characters, and the subcommand code in the
last four characters.

10, 12, Last Five Return These five rule-array elements contain the
14, 16, Codes SAPI return codes and reason codes
18 corresponding to the five commands in

rule-array elements 9, 11, 13, 15, and 17.

Each element contains the return code in the
first four characters, and the reason code in the
last four characters.

2-40 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Cryptographic_Facility_Query

Figure 2-3 (Page 6 of 7). Cryptographic_Facility_Query Information Returned in
the Rule Array

Element Name Description
Number

Output rule-array for option STATEID (Environment Identifier)

1,2 EID The two elements when concatenated provide
the 16-byte EID value.

Output rule-array for option STATEXPT

1 Base CCA A numeric character string containing a value to
Services indicate whether base CCA services are
Availability available:

e Zero means base CCA services are not
available

¢ One means base CCA services are
available.

2 CDMF Availability A numeric character string containing a value to

indicate whether CDMF encryption is available:

e Zero means CDMF encryption is not
available
¢ One means CDMF encryption is available.

3 56-bit DES A numeric character string containing a value to
Availability indicate whether 56-bit DES encryption is
available:

e Zero means 56-bit DES encryption is not
available

¢ One means 56-bit DES encryption is
available.

4 Triple-DES A numeric character string containing a value to
Availability indicate whether Triple-DES encryption is
available:

e Zero means Triple-DES encryption is not
available

¢ One means Triple-DES encryption is
available.

5 SET Services A numeric character string containing a value to
Availability indicate whether SET (Secure Electronic
Transaction) services are available:

e Zero means SET services are not available
¢ One means SET services are available.

6 Maximum Modulus A numeric character string containing the
for Symmetric Key maximum modulus size that is enabled for the
Encryption encryption of symmetric keys. This defines the

longest public-key modulus that can be used
for key management of symmetric-algorithm
keys.

Chapter 2. CCA Node-Management and Access-Control ~ 2-41

Cryptographic_Facility_Query CCA Release 2.52

Figure 2-3 (Page 7 of 7). Cryptographic_Facility_Query Information Returned in
the Rule Array

Element Name Description
Number

Output rule-array for option STATMOFN

Elements one and two, and elements three and four, are each treated as a 16-byte
string with the high-order 15 bytes having meaningful information and the 16th byte
containing a space character. Each byte provides status information about the 'i'th
share, 1<i<15, of master-key information.

1,2 Master-Key Shares The 15 individual bytes are set to one of these
Generation character values:
0 Cannot be generated
1 Can be generated
2 Has been generated but not
distributed
3 Generated and distributed once
4 Generated and distributed more
than once.
3,4 Master-Key Shares The 15 individual bytes are set to one of these
Reception character values:
0 Cannot be received
1 Can be received
3 Has been received
4 Has been received more than once.
5 'm' The minimum number of shares required to

instantiate a master key through the
master-key-shares process. The value is
returned in two characters, valued from 01 to
15, followed by six space characters.

6 'n' The maximum number of distinct shares
involved in the master-key shares process.
The value is returned in two characters, valued
from 01 to 15, followed by six space
characters.

Output rule-array for option TIMEDATE

1 Date The current date is returned as a character
string of the form YYYYMMDD, where YYYY
represents the year, MM represents the month
(01-12), and DD represents the day of the
month (01-31).

2 Time The current GMT time of day is returned as a
character string of the form HHMMSS.

3 Day of the Week The day of the week is returned as a number
between 1 (Sunday) and 7 (Saturday).

verb_data_length
The verb_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the verb_data variable.

verb_data
The verb_data parameter is a pointer to a string variable containing data sent
to the Coprocessor for this verb, or received from the Coprocessor as a result

2-42 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Cryptographic_Facility_Query

of this verb. Its use depends on the options specified by the host application
program.

The verb_data parameter is not currently used by this verb.
Required Commands

Cryptographic_Facility_Query is a universally authorized verb. There are no
access-control restrictions on its use.

Chapter 2. CCA Node-Management and Access-Control ~ 2-43

Cryptographic_Resource_Allocate CCA Release 2.52

Cryptographic_Resource_Allocate (CSUACRA)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Cryptographic_Resource_Allocate verb is used to allocate a specific CCA
Coprocessor for use by the thread or process, depending on the scope of the verb.
For the OS/400, this verb is scoped to a process; for the other implementations,
this verb is scoped to a thread. When a thread (or process, depending on the
scope) allocates a cryptographic resource, requests will be routed to that resource.
When a cryptographic resource is not allocated, requests will be routed to the
default cryptographic resource.

You can set the default cryptographic resource. If you take no action, the default
assignment is CRPO1.

You cannot allocate a cryptographic resource while one is already allocated. Use
the Cryptographic_Resource_Deallocate verb to deallocate a currently allocated
cryptographic resource.

Be sure to review “Multi-Coprocessor Capability” on page 2-10 and “Master-Key
Considerations with Multiple CCA Coprocessors” on page 2-17.

None

CSUACRA

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

resource_name_length Input Integer

resource_name Input String resource_name_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

2-44 |BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Cryptographic_Resource_Allocate

Keyword | Meaning

Cryptographic resource (required)
DEVICE | Specifies an (IBM 4758) CCA Coprocessor.

resource_name_length
The resource_name_length parameter is a pointer to an integer variable
containing the number of bytes of data in the resource_name variable. The
length must be within the range of 1 to 64.

resource_name
The resource_name parameter is a pointer to a string variable containing the
name of the Coprocessor to be allocated.

Required Commands
None

Chapter 2. CCA Node-Management and Access-Control ~ 2-45

Cryptographic_Resource_Deallocate CCA Release 2.52

Cryptographic_Resource_Deallocate (CSUACRD)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Cryptographic_Resource_Deallocate verb is used to deallocate a specific CCA
Coprocessor that is currently allocated by the thread or process, depending on the
scope of the verb. For the OS/400, this verb is scoped to a process; for the other
implementations, this verb is scoped to a thread. When a thread (or process,
depending on the scope) deallocates a cryptographic resource, requests will be
routed to the default cryptographic resource.

You can set the default cryptographic resource. If you take no action, the default
assignment is CRPO1.

Be sure to review “Multi-Coprocessor Capability” on page 2-10 and “Master-Key
Considerations with Multiple CCA Coprocessors” on page 2-17.

If a thread with an allocated Coprocessor terminates without first deallocating the
Coprocessor, excess memory consumption will result. It is not necessary to
deallocate a cryptographic resource if the process itself is terminating; it is only
suggested if individual threads terminate while the process continues to run.

None

CSUACRD

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

resource_name_length Input Integer

resource_name Input String resource_name_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

2-46 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Cryptographic_Resource_Deallocate

Keyword | Meaning

Cryptographic resource (required)
DEVICE | Specifies an (IBM 4758) CCA Coprocessor.

resource_name_length
The resource_name_length parameter is a pointer to an integer variable
containing the number of bytes of data in the resource_name variable. The
length must be within the range of 1 to 64.

resource_name
The resource_name parameter is a pointer to a string variable containing the
name of the Coprocessor to be deallocated.

Required Commands
None

Chapter 2. CCA Node-Management and Access-Control ~ 2-47

Key_Storage_Designate CCA Release 2.52

Key_Storage_Designate (CSUAKSD)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X

The Key_Storage_Designate verb specifies the key-storage file used by the
process.

You select the type of key storage, for DES keys or for public keys, using a
rule-array keyword.

Restrictions
None
Format
CSUAKSD
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one
rule_array Input String rule_array_count * 8 bytes
array
key_storage_file_name_length Input Integer
key_storage_file_name Input String key_storage_file_name_length
bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Key-storage type (one required)

DES Indicates that the file name applies to the DES key-storage
specification.

PKA Indicates that the file name applies to the public-key
key-storage specification.

2-48 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Storage_Designate

key_storage_file_name_length
The key_storage_file_name_length parameter is a pointer to an integer variable
containing the number of bytes of data in the key_storage_file_name variable.
The length must be within the range of 1 to 64.

key_storage_file_name
The key_storage_file_name parameter is a pointer to a string variable
containing the fully qualified file name of the key-storage file to be selected.

Required Commands
None

Chapter 2. CCA Node-Management and Access-Control ~ 2-49

Key_Storage_Initialization CCA Release 2.52

Key_Storage_Initialization (CSNBKSI)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Key_Storage_Initialization verb initializes a key-storage file using the current
symmetric or asymmetric master-key. The initialized key storage will not contain
any pre-existing key records. The name and path of the key storage data and
index file are established differently in each operating environment. See the IBM
4758 PCI Cryptographic Coprocessor CCA Support Program Installation Manual for
information on these files.

Restrictions
None
Format
CSNBKSI
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer two
rule_array Input String rule_array_count * 8 bytes
array
key_storage_file_name_length Input Integer
key_storage_file_name Input String key_storage_file_name_length
bytes
key_storage_description_length Input Integer <64
key_storage_description Input String key_storage_description_length
bytes
clear_master_key Input String 24 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be two for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Master-key source (required)

CURRENT Specifies that the current symmetric master-key of the default
cryptographic facility is to be used for the initialization.

2-50 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Key_Storage_Initialization

Keyword Meaning

Key-storage selection (one required)

DES Initialize DES key-storage.

PKA Initialize PKA key-storage.

key_storage_file_name_length
The key_storage_file_name_length parameter is a pointer to an integer variable
containing the number of bytes of data in the key_storage_file_name variable.
The length must be within the range of 1 to 64.

key_storage_file_name
The key_storage_file_name parameter is a pointer to a string variable
containing the fully qualified file name of the key-storage file to be initialized. If
the file does not exist, it is created. If the file does exist, it is overwritten and
all existing keys are lost.

key_storage_description_length
The key_storage_description_length parameter is a pointer to an integer
variable containing the number of bytes of data in the key_storage_description
variable.

key_storage_description
The key_storage_description parameter is a pointer to a string variable
containing the description string that is stored in the key-storage file when it is
initialized.

clear_master_key
The clear_master_key parameter is unused, but it must be declared and point
to 24 data bytes in application storage.

Required Commands

Except in the OS/400 environment, the Key_Storage_Initialization verb requires the
Compute Verification Pattern command (offset X'001D') to be enabled in the
hardware. In the OS/400 environment, no commands are issued to the
Coprocessor and therefore command authorization does not apply.

Chapter 2. CCA Node-Management and Access-Control ~ 2-51

Logon_Control

CCA Release 2.52

Logon_Control (CSUALCT)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

Use the Logon_Control verb to perform the following services:
e Log on to the Coprocessor, using your access-control profile
e Log off of the Coprocessor
e Save or restore logon content information.

Select the service to perform by specifying the corresponding keyword in the input
rule-array. Only one service is performed for each call to this verb.

If you log on to the adapter when you are already logged on, the existing logon
session is replaced with a new session.

None

CSUALCT

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length

rule_array_count Input Integer one or two

rule_array Input String rule_array_count * 8 bytes
array

user_id Input String 8 bytes

auth_parms_length Input Integer

auth_parms Input String auth_parms_length bytes

auth_data_length In/Output Integer

auth_data Input String auth_data_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or
two for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

2-52 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Logon_Control

Keyword Meaning

Keywords used to log on

LOGON Tells the Coprocessor that you want to log on. When you use
the LOGON keyword, you must also use a second keyword,
PPHRASE, to indicate how you will identify yourself to the
Coprocessor.

PPHRASE Specifies that you are going to identify yourself using a
passphrase.

Keywords used to log off

LOGOFF Tells the Coprocessor you want to log off.

FORCE Tells the Coprocessor that a specified user is to be logged off.
The user's profile ID is specified by the user_id parameter.

Keywords used to save and restore logon context information

GET-CNTX Obtains a copy of the logon context information that is
currently active in your session. See “Use of Logon Context
Information” on page 2-8.

PUT-CNTX Restores the logon context information that was saved using
the GET_CNTX keyword. See “Use of Logon Context
Information” on page 2-8.

user_id
The user_id parameter is a pointer to a string variable containing the ID string
which identifies the user to the system. The user ID must be exactly eight
characters in length. Shorter user IDs should be padded on the right with
space characters.

The user_id parameter is always used when logging on. It is also used when
the LOGOFF keyword used in conjunction with the FORCE keyword to force a
user off.

auth_parms_length
The auth_parms_length parameter is a pointer to an integer variable containing
the number of bytes of data in the auth_parms variable.

On input, this variable contains the length (in bytes) of the auth_parms variable.
On output, this variable contains the number of bytes of data returned in the
auth_parms variable.

auth_parms
The auth_parms parameter is a pointer to a string variable containing data
used in the authentication process.

This field is used differently depending on the authentication method specified
in the rule array.

Keyword Contents of auth_parms field

PPHRASE The authentication parameter field is empty. lts length is zero.

auth_data_length
The auth_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the auth_data variable.

Chapter 2. CCA Node-Management and Access-Control ~ 2-53

Logon_Control

CCA Release 2.52

On input, this field contains the length (in bytes) of the auth_data variable.
When no usage is defined for the auth_data parameter, set the length variable

to zero.

On output, this field contains the number of bytes of data returned in the

auth_data variable.

auth_data

The auth_data parameter is a pointer to a string variable containing data used
in the authentication process.

This field is used differently depending on the keywords specified in the rule

array.

Rule-Array
Keyword

Contents of auth_data field

PPHRASE and
LOGON

The authentication data field contains the user-provided
passphrase.

GET-CNTX

The authentication data field receives the active logon context
information. The size of the buffer provided for the auth_data
field must be at least 256 bytes.

PUT-CNTX

The authentication data field contains your active logon
context.

Required Commands

The Logon_Control verb requires the Force User Logoff of a Specified User
command (offset X'011B') to be enabled in the hardware for use with the FORCE

2-54

keyword.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Master_Key_Distribution

Master_Key_Distribution (CSUAMKD)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Master_Key_Distribution verb is used to perform these operations related to
the distribution of shares of the master key:

¢ Generate and distribute a share of the current master-key
* Receive a master-key share. When sufficient shares are received, reconstruct
the master key in the new master-key register.

You choose which class of master key, either symmetric or asymmetric, to clone
with the SYM-MK and the ASYM-MK rule-array keywords. If neither keyword is
specified, the verb performs the same operation on both classes of registers,
provided that the registers already contain the same values.

OBTAIN and INSTALL rule-array keywords control the operation of the verb.

With the OBTAIN keyword...
* You specify:

— The share number, i, where 1 <i < 15 and i < the maximum number of
shares to be distributed as defined by the SET-MOFN option in the
Cryptographic_Facility_Control verb

— The private_key_name of the Coprocessor-retained key used to sign a
generated master-key share. This key must have the CLONE attribute set
at the time of key generation.

— The certifying_key_name of the public key already registered in the
Coprocessor used to validate the following certificate

— The certificate and its length that provides the public key used to encrypt
the clone_information_encrypting_key

— The length and location of the clone_information field that will receive the
encrypted cloning information (master-key share).

e The verb performs:

— Generation of master-key shares, as required, and formatting of the
information to be cloned

— Signing of the cloning_information

— Generation of an encryption key and encryption of the cloning information

— Recovery and validation of the public key used to encrypt the
clone_info_encrypting_key

— Encryption of the clone_info_encrypting_key.

e The verb returns:
— The encrypted cloning information
— The encrypted clone_info_encrypting_key.
With the INSTALL keyword...
e You specify:

— The share number, i, presented in this request

Chapter 2. CCA Node-Management and Access-Control ~ 2-55

Master_Key_Distribution CCA Release 2.52

— The private_key_name of the Coprocessor-retained key used to decrypt the
clone_info_encrypting_key. This key must have the CLONE attribute set at
the time of key generation.

— The certifying_key_name of the public key already registered in the
Coprocessor used to validate the following certificate

— The certificate and its length that provides the public key used to validate
the signature on the cloning information

— The length and location of the clone_info field that provides the encrypted
cloning information (master-key share).

e The verb performs:

— Recovery of the clone_info_encrypting_key

— Decryption of the cloning information

— Recovery and validation of the public key used to validate the cloning
information signature

— Validation of the cloning information signature

— Retention of a master-key share

— Regeneration of a master key in the new master-key register when
sufficient shares have been received.

e The verb returns:

— A return code valued to four if the master key has been recovered into the
new master-key register. A return code of zero indicates that processing
was normal, but a master key was not recovered into the new master-key
register. (Other return codes, and various reason codes, can also occur in
abnormal cases.)

Restrictions
When using the OBTAIN keyword, the current master-key register must be full.
When using the INSTALL keyword, the new master-key register must be clear
(empty).
Format
CSUAMKD
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one or two
rule_array Input String rule_array_count * 8 bytes
array
share_index Input Integer
private_key_name Input String 64 bytes
certifying_key_name Input String 64 bytes
certificate_length Input Integer
certificate Input String certificate_length bytes
clone_info_encrypting_key_length In/Output Integer
clone_info_encrypting_key In/Output String clone_info_encrypting_key_length
bytes
clone_info_length In/Output Integer
clone_info In/Output String clone_info_length bytes

2-56 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Parameters

Master_Key_Distribution

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or
two for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Operation (one required)

OBTAIN Generate and output a master-key share and other cloning
information.
INSTALL Receive a master-key share and other cloning information.

Master-key choice (one, optional)

SYM-MK Operate with the symmetric master-key registers.

ASYM-MK Operate with the asymmetric master-key registers.

share_index
The share_index parameter is a pointer to an integer variable containing the
index number of the share to be generated or received by the Coprocessor.

private_key_name
The private_key_name parameter is a pointer to a string variable containing the
name of the Coprocessor-retained private key used to sign the cloning
information (OBTAIN mode), or recover the cloning-information encrypting key
(INSTALL mode).

certifying_key_name
The certifying_key_name parameter is a pointer to a string variable containing
the name of the Coprocessor-retained public key used to verify the offered
certificate.

certificate_length
The certificate_length parameter is a pointer to an integer variable containing
the number of bytes of data in the certificate variable.

certificate
The certificate parameter is a pointer to a string variable containing the
public-key certificate that can be validated using the public key identified with
the certifying_key_name variable.

clone_info_encrypting_key_length
The clone_info_encrypting_key_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
clone_info_encrypting_key variable.

Chapter 2. CCA Node-Management and Access-Control ~ 2-57

Master_Key_Distribution CCA Release 2.52

clone_info_encrypting_key
The clone_info_encrypting_key parameter is a pointer to a string variable
containing the encrypted key used to recover the cloning information.

clone_info_length
The clone_info_length parameter is a pointer to an integer variable containing
the number of bytes of data in the clone_info variable.

clone_info
The clone_info parameter is a pointer to a string variable containing the
encrypted cloning information (master-key share).

Required Commands

The Master_Key_Distribution verb requires the following commands to be enabled
based on the requested share-number, 1<i<15, and the use of either the OBTAIN
or the INSTALL rule-array keyword:

e Clone-info Obtain command (offset X'0210'+share_index, for example, for
share 10, X'021A")

¢ Clone-info Install command (offset X'0220'+share_index, for example, for
share 12, X'022C").

2-58 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Master_Key_Process

Master_Key_Process (CSNBMKP)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Master_Key_Process verb operates on the three master-key registers: new,
current, and old. Use the verb to:

e Clear the new and clear the old master-key registers
» Generate a random master-key value in the new master-key register
e Exclusive-OR a clear value as a key part into the new master-key register

e Set the master key which transfers the current master-key to the old master-key
register, the new master-key to the current master-key register, and clear the
new master-key register. SET also clears the master-key-shares tables.

For IBM 4758 Cryptographic Coprocessor implementations, the master key is a
triple-length, 168-bit, 24-byte value.

You choose processing of the symmetric or asymmetric registers by specifying one
of the SYM-MK and the ASYM-MK rule-array keywords. If neither keyword is
specified, the verb performs the same operation on both classes of registers,
provided that the registers already contain the same values.

Before starting to load new master-key information, ensure that the new master-key
register is cleared. Do this by using the CLEAR keyword in the rule array.

To form a master key from key parts in the new master-key register, use the verb
several times to complete the following tasks:

e Clear the register, if it is not already clear

* Load the first key part

* Load any middle key-parts, calling the verb once for each middle key_part
e Load the last key_part.

You can remove a prior master-key from the Coprocessor with the CLR-OLD
keyword. The contents of the old master-key register are removed and
subsequently only current-master-key encrypted keys will be usable. If there is a
value in the old master-key register, this master key can also be used to decrypt an
enciphered working key.

For symmetric master-keys, the low-order bit in each byte of the key is used as
parity for the remaining bits in the byte. Each byte of the key part should contain
an odd number of one bits. If this is not the case, a warning is issued. The
product maintains odd parity on the accumulated symmetric master-key value.

When the LAST master-key part is entered, this additional processing is performed:

e If any two of the eight-byte parts of the new master-key have the same value, a
warning is issued. This warning should not be ignored and a key with this
property should generally not be used.

Chapter 2. CCA Node-Management and Access-Control ~ 2-59

Master_Key_Process CCA Release 2.52

Restrictions

Format

Parameters

e The master-key verification pattern (MKVP) of the new master-key is compared
against the MKVP of the current and the old master-keys. If they are the
same, the service fails with return code 8, reason code 704.

» If any of the eight-byte parts of the new master-key compares equal to one of
the weak DES-keys, the service fails with return code 8, reason code 703. See
page 2-62 for a list of these “weak” keys. (A parity-adjusted version of the
asymmetric master-key is used to look for weak keys.)

Except in the OS/400 environment, as part of the SET process, if a DES and/or
PKA key-storage exists, the header record of each key storage is updated with the
verification pattern of the (new) current master-key. The OS/400 environment does
not have master-key verification records in the key-storage data set.

None

CSNBMKP

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one, two, or three

rule_array Input String rule_array_count * 8 bytes
array

key_part Input String 24 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one,
two, or three for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Cryptographic component (optional)

ADAPTER Specifies the Coprocessor. This is the default for IBM 4758
implementations.

Master-key choice (one, optional)

SYM-MK Operate with the symmetric master-key registers.

ASYM-MK Operate with the asymmetric master-key registers.

2-60 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Master_Key_Process

Keyword Meaning

Master-key process (one required)

CLEAR Specifies to clear the new master-key register.

CLR-OLD Specifies to clear the old master-key register and set the
status for this register to empty.

You can use the CLR-OLD keyword to cause the old
master-key register to be cleared. The status response in the
Cryptographic_Facility_Query verb, STATCCA, shows the
condition of this register.

FIRST Specifies to load the first key_part.

MIDDLE Specifies to XOR the second, third, or other intermediate
key_part into the new master-key register.

LAST Specifies to XOR the last key_part into the new master-key
register.

RANDOM Causes generation of a random master-key value in the new

master-key register.

SET Specifies to advance the current master-key to the old
master-key register, to advance the new master-key to the
current master-key register, and to clear the new-master-key
register.

key_part
The key_part parameter is a pointer to a string variable containing a 168-bit
(3x56-bit, 24-byte) clear key-part that is used when you specify one of the
keywords FIRST, MIDDLE, or LAST

If you use the CLEAR, RANDOM, or SET keywords, the information in the
variable is ignored, but you must declare the variable.

Required Commands

The Master_Key_Process verb requires the following commands to be enabled in
the hardware:

e To process the symmetric master-keys, and also the asymmetric master-keys
when neither master-key set is specified:

— Clear New Master Key Register command (offset X'0032') with the
CLEAR keyword

— Clear Old Master Key Register command (offset X'0033"') with the
CLR-OLD keyword

— Load First Master Key Part command (offset X'0018') with the FIRST
keyword

— Combine Master Key Parts command (offset X'0019"') with the MIDDLE or
LAST keyword

— Generate Random Master Key command (offset X'0020"') with the
RANDOM keyword

— Set Master Key command (offset X'001A") with the SET keyword.

e To process the asymmetric master-keys:

— Clear New PKA Master Key Register command (offset X'0060') with the
CLEAR keyword

Chapter 2. CCA Node-Management and Access-Control 2-61

Master_Key_Process

CCA Release 2.52

— Clear Old PKA Master Key Register command (offset X'0061') with the
CLR-OLD keyword
— Load First PKA Master Key Part command (offset X'0053') with the FIRST

keyword

— Combine PKA Master Key Parts command (offset X'0054') with the
MIDDLE or LAST keywords
— Generate Random PKA Master Key command (offset X'0120"') with the
RANDOM keyword
— Set PKA Master Key command (offset X'0057"') with the SET keyword.

Related Information
The following are considered questionable DES keys:

2-62

01
FE
1F
EO
01
FE
1F
EO
01
EO
1F
FE
01
1F
EO
FE
1F
01
1F
01
EO
FE
FE
EO
FE
EO
EO
FE
FE
EO
FE
EO
01
1F
1F
01
1F
01
01
1F
EO
FE
FE
EO

IBM 4758 CCA Basic Services, Release 2.52, April 2004

01
FE
1F
EO
FE
01
EO
1F
EO
01
FE
1F
1F
01
FE
EO
1F
1F
01
01
EO
FE
EO
FE
EO
FE
EO
FE
1F
1F
01
01
EO
FE
EO
FE
EO
FE
EO
FE
01
1F
01
1F

01
FE
1F
EO
01
FE
1F
EO
01
EO
1F
FE
01
1F
EO
FE
01
1F
01
1F
01
01
1F
1F
01
01
1F
1F
EO
FE
EO
FE
EO
EO
FE
FE
EO
EO
FE
FE
01
01
1F
1F

01
FE
1F
EO
FE
01
EO
1F
EO
01
FE
1F
1F
01
FE
EO
01
01
1F
1F
01
01
01
01
1F
1F
1F
1F
01
01
1F
1F
01
01
01
01
1F
1F
1F
1F
EO
EO
EO
EO

01
FE
OE
F1
01
FE
OE
F1
01
F1
OE
FE
01
OE
F1
FE
OE
01
OE
01
F1
FE
FE
F1
FE
F1
F1
FE
FE
F1
FE
F1
01
OE
OE
01
OE
01
01
OE
F1
FE
FE
F1

01
FE
OE
F1
FE
01
F1
OE
F1
01
FE
OE
OE
01
FE
F1
OE
OE
01
01
F1
FE
F1
FE
F1
FE
F1
FE
OE
OE
01
01
F1
FE
F1
FE
F1
FE
F1
FE
01
OE
01
OE

01
FE
OE
F1
01
FE
OE
F1
01
F1
OE
FE
01
OE
F1
FE
01
OE
01
OE
01
01
OE
OE
01
01
OE
OE
F1
FE
F1
FE
F1
F1
FE
FE
F1
F1
FE
FE
01
01
OE
OE

01
FE
OE
F1
FE
01
F1
OE
F1
01
FE
OE
OE
01
FE
F1
01
01
OE
OE
01
01
01
01
OE
OE
OE
OE
01
01
OE
OE
01
01
01
01
OE
OE
OE
OE
F1
F1
F1
F1

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

weak */

weak */

weak */

weak */

semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak
semi-weak

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

CCA Release 2.52 Master_Key_Process

FE 01 01 FE FE 01 01 FE /* possibly semi-weak =/
EO 1F 01 FE F1 OE 01 FE /* possibly semi-weak =*/
EO 01 1F FE F1 01 OE FE /* possibly semi-weak =x/
FE 1F 1F FE FE OE OE FE /+* possibly semi-weak */
1F FE 01 EO EO FE 01 F1 /* possibly semi-weak =*/
01 FE 1F E®@ 01 FE OE F1 /* possibly semi-weak */
1F EO 01 FE OE F1 01 FE /* possibly semi-weak =/
01 E@ 1F FE 01 F1 OE FE /* possibly semi-weak =/
01 01 EO EO 01 01 F1 F1 /* possibly semi-weak */
1F 1F EO EO OE OE F1 F1 /* possibly semi-weak =*/
1IF 01 FE EO OE 01 FE F1 /* possibly semi-weak =/
01 1F FE EO 01 OE FE F1 /* possibly semi-weak =/
1F 01 EO FE OE 01 F1 FE /* possibly semi-weak =/
01 1F EO FE 01 E@ F1 FE /* possibly semi-weak */
01 01 FE FE 01 01 FE FE /* possibly semi-weak =/
1F 1F FE FE OE OE FE FE /* possibly semi-weak */
FE FE EO EO FE FE F1 F1 /* possibly semi-weak =*/
EO FE FE EO F1 FE FE F1 /% possibly semi-weak =/
FE EO EO FE FE F1 F1 FE /* possibly semi-weak =/
EO EO FE FE F1 F1 FE FE /* possibly semi-weak =/

Chapter 2. CCA Node-Management and Access-Control ~ 2-63

Random_Number_Tests CCA Release 2.52

Random_Number_Tests (CSUARNT)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X

Restrictions

Format

Parameters

The Random_Number_Tests verb invokes the USA NIST FIPS PUB 140-1
specified cryptographic operational tests. These tests, selected by a rule-array
keyword, consist of:

e For random numbers: monobit test, poker test, runs test, and long run test
e Known answer tests of DES, RSA, and SHA-1 processes.

The tests are performed three times. If there is any test failure, the verb returns
return code four and reason code one.

None

CSUARNT

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes

array

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Test selection (one required)

FIPS-RNT Perform the FIPS 140-1 specified test on the random number
generation output.

KAT Perform the FIPS 140-1 specified known-answer tests on
DES, RSA, and SHA-1.

2-64 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Random_Number_Tests

Required Commands
None.

Chapter 2. CCA Node-Management and Access-Control ~ 2-65

CCA Release 2.52

2-66 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Chapter 3. RSA Key-Management

This chapter describes the management of RSA public and private keys and how
you can:

* Generate keys with various characteristics
e Import keys from other systems
* Protect and move a private key from one node to another.

The verbs listed in Figure 3-1 are used to perform cryptographic functions and
assist you in obtaining key-token data structures.

Figure 3-1. Public-Key Key-Administration Services

Verb Page | Service Entry Svc
Point Len
PKA_Key_Generate 3-7 Generates a public-private key-pair. CSNDPKG E
PKA_Key_Import 3-11 Imports a public-private key-pair. CSNDPKI E
PKA_Key_Token_Build 3-14 Builds a public-key-architecture (PKA) key-token. CSNDPKB S
PKA_Key_Token_Change 3-22 Reenciphers a private key from the old asymmetric CSNDKTC E

master-key to the current asymmetric master-key.

PKA_Public_Key_Extract 3-24 Extracts a public key from a public-private public-key CSNDPKX S
token.
PKA_Public_Key_Hash_Register | 3-26 Registers the hash of a public key used later to verify an CSNDPKH E

offered public key. See PKA_Public_Key_Register.

PKA_Public_Key_Register 3-28 Registers a public key used later to verify an offered CSNDPKR E

public-key. Registration requires that a hash of the public
key has previously been registered within the Coprocessor.
See PKA_Public_Key_Hash_Register.

Service location (Svc Lcn)

: E=Cryptographic Engine, S=Security API software

RSA Key-Management

This implementation of CCA supports a set of public-key cryptographic services that
are collectively designated PKA96. The PKA96 services support the RSA
public-key algorithm and related hashing methods including MD5 and SHA-1.
Figure 3-2 on page 3-2 shows the relationship among the services, the
public-private key-token, and other data involved with supporting digital signatures
and symmetric (DES) key exchange.

These topics are discussed in this section:

* How to generate a public-private key pair

e How to import keys from other systems

e How to update a private key when the asymmetric master-key that protects a
private key is changed

* How to use the keys and provide for private-key protection

* How to use a private key at multiple nodes

e How to register and retain a public key.

© Copyright IBM Corp. 1997, 2004 3-1

CCA Release 2.52

‘PKA_Key_Token_Bui]d
I

(Skeleton)

PKA_Key_Import PKA_Key_Generate

v

PKA96 PU-PR Key Token
PU: Clear I
PR: e*MK(PR) One_Way_Hash
or e*KEK(PR)
or Clear

Y \ 4

Data

\ 4
|Digita]_Signature_Generate
|PKA_Pub]ic_Key_Extract}]
|
M. CY(K) |
Digital
(DES/CDMF PU Key Token Signature
Key)
PKA_Symmetric_Key_Export [B;gita]_Signature_Verify
PKA_Symmetric_Key Generate I
|]
yes/no

ePU(K),CV
(Private key)

|PKA_Symmetric_Key_Import
I

Designates VerbI
exMK. CV (K)
Data Structure
(DES/CDMF Key)

Figure 3-2. PKA96 Verbs with Key-Token Flow

Key Generation

You generate RSA public-private key-pairs using the PKA_Key_Generate verb.
You specify certain facts about the desired key in a “skeleton key token” that you
can create using the PKA_Key_Token_Build verb.

When generating the key-pair you must determine:

¢ The key-length

e How, or if, the private key should be encrypted

 If the key should be retained within the Coprocessor, and if so, its name (label)
e The form of the private key: modular-exponent or Chinese Remainder

e A key name if access-control on the name will be employed

* Whether the key should be usable in symmetric key-exchange operations

* Whether the key should be usable in digital signature generation operations.

3-2 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

The PKA_Key_Generate verb either retains the generated private key within the
Coprocessor, or the verb outputs the generated private key in one of three forms so
you can control where the private key is deployed.

You can request that the generated private key be retained within the secure
cryptographic-engine through the use of the RETAIN keyword on the
PKA_Key_Generate verb. In this case, only the public key is returned. You use
the retained private key by referring to it with a key label which you specify in the
key-name section of the skeleton key-token.

If you do not retain the private key within the Coprocessor, you select how you wish
to receive the private key:

e Cleartext

Both the private and public keys are returned as cleartext. This option requires
that you provide protection for the private key by means other than encryption
within the key-generating step. This option is provided so the user can test, or
interface with, other systems or applications that require the private key to be in
the clear.

e Enciphered by the local master-key

You can request that the key-generating service return the private key
enciphered by the asymmetric master-key within the cryptographic engine.
Since there is no service available to re-encrypt the private key other than by
the current or a replacement master-key, the generated private key is
effectively locked to the generating node, or other nodes that you establish with
the same master key. (Generally these would be backup nodes or parallel
nodes for greater throughput.)

e Enciphered by a transport key-encrypting-key

You can request the service to encrypt the generated private key under either a
DES IMPORTER key or a DES EXPORTER key. An IMPORTER key will
permit the private key to be imported and used later at the generating node.

Or, the key-encrypting key can be an EXPORTER transport key. An
EXPORTER key is shared with one or more nodes. This allows you to
distribute the key to another node(s). For example, you could obtain a private
key in this form for distribution to a zSeries (S/390) large server's integrated
RSA cryptographic processor.

Note: EXPORTER and IMPORTER key-encrypting “transport” keys are
discussed in Chapter 5, “DES Key-Management.”

Because you can obtain the private key, it can be made functional on more than
one cryptographic engine and used for backup or additional throughput. Your
administration procedures control where the key can be used. The private key can
be transported securely between nodes in its encrypted form. You can set up
one-way key distribution channels between nodes and “lock” the receiving transport
key-encrypting key to a particular node or nodes so that you can be certain where
the private key exists. This ability to replicate a key to multiple nodes is especially
important to high-throughput server systems and important for backup processing
purposes.

In systems with an access monitor like RACF on IBM zSeries servers, the key
name that you associate with a private key gives you the ability to enforce

Chapter 3. RSA Key-Management 3-3

CCA Release 2.52

restricted key usage. These systems can determine if a requesting process has
the right to use the particular key name that is cryptographicly bound to the private
key. You specify such a key name when you build the skeleton_key_token in the
PKA_Key_Token_Build verb.

For RSA keys, you decide if the key should be returned in modular-exponent form
or in Chinese-Remainder-Theorem (CRT) form. Generally the CRT form performs
faster in services that use the private key. This decision is represented by the form
of the private key that you indicate in the skeleton_key_token. You can reuse an
existing key-token having the desirable properties, or you can build the
skeleton_key_token with the PKA_Key_Token_Build verb. Note that certain
implementations such as the IBM zSeries (S/390) server CMOS Cryptographic
Coprocessor feature (CCF) cannot employ a private key in the CRT form generated
by the PKA_Key_Generate verb. (The PCICC feature on the zSeries does support
use of the generated CRT key.)

For RSA keys, you also decide if the public exponent should be valued to three,
216+1, or fully random. Also, in the PKA_Key_Token_Build verb you can indicate
that the key should be usable for both digital signature signing and symmetric key
exchange (KEY-MGMT), or you can indicate that the key should be usable only for
digital signature signing (SIG-ONLY), or only key decryption (KM-ONLY).

The key can be generated as a random value, or the key can be generated based
on a seed derived from regeneration data provided by the application program.

You can also have a newly generated public key “certified” by a private key held
within the Coprocessor. You can obtain a self-signature, and/or a signature(s) from
another key. To obtain these signature/certificates, you must extend the skeleton
key-token yourself as this support is not provided by the PKA_Key_Token_Build
verb.

The formats of the key tokens are described in “RSA PKA Key-Tokens” on

page B-6. The key tokens are a concatenation of several “sections” with each
section providing information pertaining to the key. All of the described formats can
be input to the Version 2 support, but only selected formats are output by Version 2
support.

Key Import
To be secure and useful in services, a private key must be enciphered by an
asymmetric master-key on the CCA node where it will be used.! You can use the
PKA_Key_Import verb to get a private key deciphered from a transport key and
enciphered by the asymmetric master-key. Also, you can get a clear
(unenciphered) private key enciphered by the master key using the
PKA_Key_Import verb.

The public and private keys must be presented in a PKA external key-token (see
“RSA PKA Key-Tokens” on page B-6). You can use the PKA_Key_Token_Build
verb to structure the key into the proper token format.

1 Of course a private key generated as a retained private-key is also secure, but in this case PKA_Key_Import does not apply.

3-4 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

You provide or identify the operational transport key (key-encrypting key) and the
encrypted private key with its associated public key to the import service. The
service will return the private key encrypted under the current asymmetric
master-key along with the public key.

The Coprocessor is designed to generate and employ RSA CRT-form keys having
p>q. If you import a private key having g>p, the key will be accepted. However,
each time that you use such a key your application will incur substantial overhead
to recalculate the inverse of the quantity U. (See Figure B-12 on page B-14 for
the components of an RSA CRT key.)

Reenciphering a Private Key Under an Updated Master-Key

When the asymmetric master-key at a CCA node is changed, operational keys,
such as RSA private keys enciphered by the master key, must be securely
decrypted from under the preexisting master key and enciphered under the
replacement master-key. You can accomplish this task using the
PKA_Key_Token_Change verb.

After the preexisting asymmetric master-key has become the old master-key and
the replacement master-key has become the current master-key, you use the
PKA_Key_Token_Change verb to effect the reencipherment of the private key.

Using the PKA Keys

The public-private keys that you create (generate) or import can be used in these
services:

For private keys:

» Digital_Signature_Generate
e PKA_Symmetric_Key_Import
e SET_Block_Decompose

e PKA_Decrypt

» Master_Key_Distribution
For public keys:
 Digital_Signature_Verify

e PKA_Symmetric_Key_Export
e PKA_Symmetric_Key_Generate
e SET_Block_Compose

e PKA_Encrypt

e Master_Key_Distribution

You must arrange appropriate protection for the private key. A CCA node can help
ensure that the key will remain confidential. However, you must ensure that the
master key and any transport keys are protected, for example, through
split-knowledge, dual-control procedures. Or, you can choose to retain the private
key in the secure cryptographic-engine.

Besides the confidentiality of the private key, you must also ensure that only
authorized applications can use the private key. You can hold the private key in
application-managed storage and pass the key to the cryptographic services as
required. This will generally limit the access other applications might have to the
key. In systems with an access monitor, such as RACF on MVS systemes, it is
possible to associate a key name with the private key and have use of the key
name authorized by the access monitor.

Chapter 3. RSA Key-Management 3-5

CCA Release 2.52

Using the Private Key at Multiple Nodes

You can arrange to use a private key at multiple nodes if the nodes have the same
asymmetric master-key, or if you arrange to have the same transport key installed
at each of the target nodes. In the latter case, you need to arrange to have the
transport key under which the private key is enciphered installed at each target
node.

Having the private key installed at multiple nodes enables you to provide increased
service levels for greater throughput, and to maintain operation when a primary
node goes out of service. Of course, having a private key installed at more than
one node increases the risk of someone misusing or compromising the key. You
have to weigh the advantages and disadvantages as you design your system or
systems.

Extracting a Public Key

CCA PKA key generation returns a public-private key-pair in a single key-token
(provided your application is not retaining the private key within the Coprocessor).
You can obtain a key token with only the public-key information using the
PKA_Public_Key_Extract verb.

If you use the public-private key token in verbs that only require the public key, the
implementation may attempt to recover the private key which in the usual case
would fail (since normally the private key should not be usable where use is being
made of the public key).

Registering and Retaining a Public Key

3-6

You can use the PKA_Public_Key_Hash_Register and the
PKA_Public_Key_Register verbs to “register” a public key in the secure
cryptographic engine under dual-control. Authorize the related commands in two
different roles to enforce a dual control policy. Your applications can subsequently
reference the registered public key stored within the engine with the confidence that
the key has been entered under dual control. Note that the
Master_Key_Distribution verb makes use of registered RSA public keys in the
master-key shares distribution scheme.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

PKA_Key_Generate

PKA_Key_Generate (CSNDPKG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Key_Generate verb is used to generate a public-private key-pair for use
with the RSA algorithm.

The skeleton_key_token specified to the verb determines the following
characteristics of the generated key-pair:

e The key type: RSA

e The key length (modulus size)

¢ The RSA public-key exponent, valued to 3, 216+1, or random

e Any RSA private-key optimization (modulus-exponent versus “Chinese
Remainder” form)

* Any signatures and signature-information that should be associated with the
public key.

The skeleton_key_token can be created using the PKA_Key_Token_Build verb.
See page 3-14.

Normally the output key is randomly generated. By providing “regeneration data,” a
seed can be supplied so that the same value of the generated key can be obtained
in multiple instances. This may be useful in testing situations or where the
regeneration data can be securely held for key generation. The process for
generating a particular key pair from regeneration data may vary between product
implementations. Therefore, you should not rely on obtaining the same key-pair for
a given regeneration data string between products.

The generated private-key can be returned in one of three forms:

* In cleartext form

e Enciphered by the CCA asymmetric master-key

» Enciphered by a transport key, either a DES IMPORTER or DES EXPORTER
key-encrypting-key. If the private key is enciphered by an IMPORTER key, it
can be imported to the generating node. If the private key is enciphered by an
EXPORTER key, it can be imported to a node where the corresponding
IMPORTER key is installed.

Using the RETAIN rule-array keyword, you can cause the private key to be retained
within the Coprocessor. You incorporate the key label by which you will later
reference the newly generated key in the “key name” section of the skeleton
key-token. (Later, you use this label to employ the key in verbs such as
Digital_Signature_Generate, PKA_Symmetric_Key_lmport, Master_Key_Distribution,
SET_Block_Decompose, and PKA_Decrypt.) On output, the verb returns an
external key-token containing the public key in the generated_key_identifier
variable. The generated_key_identifier variable returned from the verb will not
contain the private key.

Note: When using the RETAINED key option, the key label supplied in the
skeleton key-token references the key storage within the Coprocessor, and in this
case must not reference a record in the host-system key-storage.

Chapter 3. RSA Key-Management 3-7

PKA_Key_Generate CCA Release 2.52

The rule-array keyword CLONE flags a generated and retained RSA private key as
usable in an engine “cloning” process. Cloning is a technique for copying sensitive
Coprocessor information from one Coprocessor to another. (See “Understanding
and Managing Master Keys” on page 2-12.)

If you include a public-key certificate section within the skeleton key token, you
cause the cryptographic engine to sign a certificate with the key that is designated
in the public-key certificate signature subsection. Using this technique, you can
cause the cryptographic engine to sign the newly generated public key using
another key that has been retained within the engine, including the newly generated
key (producing a “self-signature”). You can obtain more than one signature on the
public key when you include multiple signature subsections in the skeleton key
token. See “RSA Public-Key Certificate Section” on page B-17.

Note: The verb will return a “section X'06'” private-key token format when you
request a modulus-exponent internal key even though you have specified a type
X'02"' skeleton token.

Restrictions

1. Not all IBM implementations of CCA may support a CRT form of the RSA
private key; check the product-specific literature. The IBM 4758 product family
implementation supports an optimized RSA private key (a key in “Chinese
Remainder” form). The formats vary between versions.

2. See “RSA PKA Key-Tokens” on page B-6 for the formats used when
generating the various forms of key token.

3. When generating a key for use with ANSI X9.31 digital signatures, the
modulus-length (key-length) must be one of 1024, 1280, 1536, 1792, or 2048
bits.

4. The key label used for a Retained key must not exist in the external key
storage held on DASD.

Format

CSNDPKG

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one or two

rule_array Input String rule_array_count * 8 bytes

array

regeneration_data_length Input Integer

regeneration_data Input String regeneration_data_length
bytes

skeleton_key_token_length Input Integer

skeleton_key_token Input String skeleton_key_token_length
bytes

transport_key _identifier Input String 64 bytes

generated_key _identifier_length In/Output Integer

generated_key _identifier In/Output String generated_key_identifier_length
bytes

3-8 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Parameters

PKA_Key_Generate

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or
two for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Private-key encryption (one required)

MASTER Enciphers the private key under the asymmetric master-key.
The transport_key_token should specify a null key-token.
XPORT Enciphers the private key under the IMPORTER or

EXPORTER key-encrypting-key identified by the
transport_key_token parameter.

CLEAR Returns the private key in cleartext.

RETAIN Returns the private key within the cryptographic engine and
returns the public key in the generated_key_identifier variable.
The name presented in the generated_key_identifier variable
is used later to access the retained private key.

Options (optional)

CLONE Flags as usable a retained private RSA key in a cryptographic
engine “cloning” operation. This keyword requires the
RETAIN keyword to also be specified.

regeneration_data_length
The regeneration_data_length parameter is a pointer to an integer variable
containing the number of bytes of data in the regeneration_data variable. This
must be a value of 0, or in the range 8 to 256, inclusive. If the value is 0, the
generated keys will be based on a random-seed value. If this value is between
8 and 256, the regeneration data will be hashed to form a seed value used in
the key generation process to provide a means for recreating a public-private
key pair.

regeneration_data
The regeneration_data parameter is a pointer to a string variable containing a
value used as the basis for creating a particular public-private key pair in a
repeatable manner. The regeneration data will be hashed to form a seed value
used in the key generation process and provides a means for recreating a
public-private key pair.

skeleton_key_token_length
The skeleton_key_token_length parameter is a pointer to an integer variable
containing the number of bytes of data in the skeleton_key_token variable. The
maximum length is 2500 bytes.

Chapter 3. RSA Key-Management 3-9

PKA_Key_Generate CCA Release 2.52

skeleton_key_token
The skeleton_key_token parameter is a pointer to a string variable containing a
skeleton key-token. This information provides the characteristics for the PKA
key-pair to be generated. A skeleton key-token can be created using the
PKA_Key_Token_Build verb.

transport_key_identifier
The transport_key_identifier parameter is a pointer to a string variable
containing an internal key-encrypting-key token or a key label of an internal
key-encrypting-key token, or a null key-token. If the XPORT rule_array
keyword is not specified, this parameter should point to a null key-token.
Otherwise, the specified key enciphers the private key and can be an
IMPORTER or an EXPORTER key-type. Use an IMPORTER key to encipher a
private key to be used at this node. Use an EXPORTER key to encipher a
private key to be used at another node.

generated_key_identifier_length
The generated_key._identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the generated_key_identifier
variable. The maximum length is 2500 bytes. On output, and if the size is of
sufficient length, the variable is updated with the actual length of the
generated_key_identifier variable.

generated_key_identifier
The generated_key._identifier parameter is a pointer to a string variable
containing either a key label identifying a key-storage record, or is other
information that will be overwritten. If the key label identifies a key record in
key storage, the generated key token will replace any key token associated
with the label. If the first byte of the identified string does not indicate a key
label (that is, not in the range X'20' to X'FE"'), and the field is of sufficient
length to receive the result, then the generated key token will be returned in the
identified variable.

When generating a RETAINed key, on output the verb returns the public-key
key-token in this variable.

Required Commands

The PKA_Key_Generate verb requires the PKA Key Generate command (offset
X'0103') to be enabled in the hardware.

Also enable one of these commands in the hardware, depending on
rule-array-keyword usage and the content of the skeleton key-token:

e With the CLONE rule-array keyword, the PKA Clone Key Generate command
(offset X'0204')

e With the CLEAR rule-array keyword, the PKA Clear Key Generate command
(offset X'0205")

3-10 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

PKA_Key_Import

PKA_Key_Import (CSNDPKI)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

The PKA_Key_Import verb is used to import a public-private key-pair. A private
key must be accompanied by the associated public key. A source private-key may
be in the clear or it may be enciphered.

Generally you obtain the key token from the PKA_Key_Generate verb. If the key
originates in a non-CCA system, you can use the PKA_Key_Token_Build verb to
create the source_key_token.

The verb will decipher the private key using the DES IMPORTER key identified by
the transport_key_identifier when the source private-key is enciphered.

Imported keys are returned in an internal target_key_identifier with the private key
enciphered by the asymmetric master-key.

e Not all IBM implementations of this verb may support an optimized form of the
RSA private-key. Check the product-specific literature. The IBM 4758 product
family implementation supports an optimized RSA private key (a key in
“Chinese Remainder” form).

With Version 2, a clear, external RSA private-key in modulus-exponent format
is presented in a key section type X'02'. When imported, the enciphered
private-key is returned in a X'06' type private-key key-token section.

e Not all IBM implementations of this verb support the use of a key label with the
target-key identifier. Check the product-specific literature.

CSNDPKI

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer zero

rule_array Input String rule_array_count * 8 bytes

array

source_key_token_length Input Integer

source_key_token Input String source_key_token_length
bytes

transport_key_identifier Input String 64 bytes

target_key_identifier_length In/Output Integer

target_key_identifier In/Output String target_key_identifier_length
bytes

Chapter 3. RSA Key-Management 3-11

PKA_Key_Import

Parameters

CCA Release 2.52

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array parameter is
not presently used in this service, but must be specified.

source_key_token_length
The source_key_token_length parameter is a pointer to an integer variable
containing the number of bytes of data in the source_key_token variable. The
maximum length is 2500 bytes.

source_key_token
The source_key_token parameter is a pointer to a string variable containing a
PKA96 key-token. The key token must contain both public-key and private-key
information. The private key can be in cleartext or it can be enciphered.

transport_key_identifier
The transport_key_identifier parameter is a pointer to a string variable
containing either a key-encrypting-key token or a key label of a
key-encrypting-key token, or a null key-token. This key will be used to decipher
an encrypted private-key. The designated DES key must be an IMPORTER
key-type with IMPORT capability enabled in its control vector.

If the source key is not encrypted, a null key-token must be specified (the first
byte of the key token must be X'00").

target_key_identifier_length
The target_key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the target_key_identifier variable.
The maximum length is 2500 bytes. On output, and if the size is of sufficient
length, the variable is updated with the actual length of the target_key_identifier
variable.

target_key_identifier
The target_key_identifier parameter is a pointer to a string variable containing
either a key label identifying a key-storage record, or is other information that
will be overwritten with the imported key. If the key label identifies a key record
in key storage, the returned key-token will replace any key token associated
with the label. If the first byte of the identified string does not indicate a key
label (that is, not in the range X'20' to X'FE"'), and the field is of sufficient
length to receive the result, then the key token will be returned in the identified
variable.

3-12 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Key_Import

Required Commands

The PKA_Key_Import verb requires the PKA Key Import command (offset X'0104"')
to be enabled in the hardware.

Chapter 3. RSA Key-Management 3-13

PKA_Key_Token_Build CCA Release 2.52

PKA_Key_Token_Build (CSNDPKB)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Key_Token_Build verb constructs a public-key architecture (PKA)
key-token from the supplied information.

This verb is used to create the following:

* A skeleton_key_token for use with the PKA_Key_Generate verb
* A key token with a public key that has been obtained from another source
* A key token with a clear private-key and the associated public key.

Other than a skeleton key-token prepared for use with the PKA_Key_Generate
verb, every PKA key-token contains a public-key value. A token optionally contains
a private-key value.

See “RSA PKA Key-Tokens” on page B-6 for a description of the key token
formats. With Version 2 software, you create RSA private-key tokens for section

types:

X'08' using the RSA-CRT keyword to obtain a token format for a key usable with
the Chinese-Remainder Theorem (CRT) algorithm.

X'02' using the RSA-PRIV keyword to obtain a token format for a key in
modulus-exponent form

X'04' using the RSA-PUBL keyword to obtain a token format for a public key.

You specify:
e The token type:

— RSA-CRT for an RSA Chinese-Remainder Theorem token
— RSA-PRIV for an RSA modulus-exponent token
— RSA-PUBL for an RSA public-key only token.

e The usage limits for a private key:

— If an RSA private-key may be allowed to import a symmetric key, and the
key may also be used to create digital signatures, include the KEY-MGMT
keyword in the rule array.

— If a private key should be prevented from use in digital signature
generation, include the KM-ONLY keyword in the rule array.

— If an RSA private-key should be prevented from use in importing of DES
keys, you may include the SIG-ONLY keyword in the rule array. This is the
default.

e A key name when:

— You need to specify the key-label for a retained private key in a skeleton
key-token.

— You are providing a key name for an access-control check in certain
systems (i.e. for IBM eServer zSeries ICSF).

3-14 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Restrictions

Format

Parameters

PKA_Key_Token_Build

e The RSA-OPT rule-array keyword is not supported with Version 2. Instead,
use keyword RSA-CRT to obtain a X'08' private-key section type.

e The RSA key length is limited to the range of 512 to 2048 bits with specific
formats restricted to 1024 bits maximum.

e When generating a key for use with ANSI X9.31 digital signatures, the
modulus-length (key-length) must be one of 1024, 1280, 1536, 1792, or 2048

bits.

CSNDPKB

return_code
reason_code
exit_data_length
exit_data
rule_array_count
rule_array

key_values_structure_length
key_values_structure

key_name_length
key_name
reserved_1_length
reserved_1
reserved_2_length
reserved_2
reserved_3_length
reserved_3
reserved_4_length
reserved_4
reserved_5_length
reserved_5
token_length
token

Qutput
Qutput
In/Output
In/Output
Input
Input

Input
Input

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
In/Output
Output

Integer
Integer
Integer
String
Integer
String
array
Integer
String

Integer
String
Integer
String
Integer
String
Integer
String
Integer
String
Integer
String
Integer
String

exit_data_length bytes
one or two
rule_array_count * 8 bytes

key_values_structure_length
bytes

key_name_length bytes
zero
null
zero
null
zero
null
zero
null
zero
null

token_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or

two for this verb.

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are

shown below:

Chapter 3. RSA Key-Management 3-15

PKA_Key_Token_Build CCA Release 2.52

Keyword Meaning

Token type (one required)

RSA-CRT Create a key token for an RSA public-key and a key in
Chinese-Remainder form.

RSA-OPT Note: This keyword is not supported with Version 2 software.

RSA-PRIV Create a key token for an RSA public and private key pair in
modulus-exponent form.

RSA-PUBL Create a key token for an RSA public-key in

modulus-exponent form.

RSA key-usage control (one, optional)

SIG-ONLY Selects a usage control to render the private key usable in
digital-signature operations but not in (DES) key import
operations. This is the default.

KEY-MGMT Selects a usage control that allows an RSA private-key to be
used in distribution of symmetric keys and in digital-signature
services.

KM-ONLY Selects a usage control to render the private key usable in
(DES) key-import operations but not in digital-signature
operations.

key_values_structure_length
The key_values_structure_length parameter is a pointer to an integer variable
containing the number of bytes of data in the key_values_structure variable.
The maximum length is 2500 bytes.

key_values_structure
The key_values_structure parameter is a pointer to a string variable containing
a structure of the lengths and data for the components of the key or keys. The
contents of this structure are shown in Figure 3-3, and sample data is
described on page 3-19.

3-16 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Key_ Token_Build

Figure 3-3 (Page 1 of 2). PKA_Key_Token_Build Key-Values-Structure Contents

Offset Length | Description
(Bytes) | (Bytes)

RSA key-values structure, modulus-exponent form (RSA-PRIV or RSA-PUBL)

000 002 Length of the modulus in bits (512 to 1024 for RSA-PRIV, 512 to 2048
for RSA-PUBL)

002 002 Length of the modulus field, n, in bytes, “nnn.” This value must not
exceed 256 for a 2048 bit-length key.

This value should be zero when preparing a skeleton key token for use
with the PKA_Key_Generate verb.

004 002 Public exponent field length in bytes, “eee.”

This value should be zero when preparing a skeleton key token to
generate a random-exponent public key in the PKA_Key_Generate verb.
This value must not exceed 256.

006 002 Private exponent field length in bytes, “ddd.” This value can be zero
indicating that private key information is not provided. This value must
not exceed 256.

008 nnn Modulus, n, integer value, 1<n<22048; n=pq for prime p and prime g.

8+nnn eee Public exponent field, e, integer value, 1<e<n, e must be odd. When
you are building a skeleton_key_token to control the generation of an
RSA key pair, the public key exponent can be one of three values: 3,
65537 (216+1), or 0 (zero) to indicate that a full-random exponent
should be generated. The exponent field can be a null-length field
when preparing a skeleton_key_token.

8+nnn ddd Private exponent, d, integer value, 1<d<n, d=e-1mod(p-1)(g-1).
+eee

RSA key-values structure, Chinese Remainder form (RSA-CRT)

000 002 Length of the modulus in bits (512 to 2048).

002 002 Length of the modulus field, n, in bytes, “nnn.”

This value can be zero if the key token will be used as a
skeleton_key_token in the PKA_Key_Generate verb.

This value must not exceed 256.

004 002 Length of the public exponent field, e, in bytes: “eee.”

This value should be zero when preparing a skeleton key token to
generate a random-exponent public key in the PKA_Key_Generate verb.
This value must not exceed 256.

006 002 Reserved, binary zero.

008 002 Length of the prime number field, p, in bytes: “ppp.” (Can be zero in a
skeleton_key_token.) The maximum value of ppp+qqq is 256 bytes.

010 002 Length of the prime number field, g, in bytes: “qqg.” (Can be zero in a
skeleton_key_token.) The maximum value of ppp+qqq is 256 bytes.

012 002 Length of the d field, in bytes: “rrr.” (Can be zero in a
skeleton_key_token.) The maximum value of rrr+sss is 256 bytes.

014 002 Length of the dq field, in bytes: “sss.” (Can be zero in a

skeleton_key_token.) The maximum value of rrr+sss is 256 bytes.

016 002 Length of the U field, in bytes: “uuu.” (Can be zero in a
skeleton_key_token.) The maximum length of U is 256 bytes.

Note:

¢ All length fields are in binary
¢ All binary fields (exponents, lengths, and so forth) are stored with the high-order byte first
(left, low-address, big endian, S/390 format).

Chapter 3. RSA Key-Management 3-17

PKA_Key_Token_Build

CCA Release 2.52

Figure 3-3 (Page 2 of 2). PKA_Key_Token_Build Key-Values-Structure Contents

Offset Length | Description
(Bytes) | (Bytes)

018 nnn Modulus, n.

018 eee Public exponent, e, integer value, 1<e<n, e must be odd.

+nnn When you are building a skeleton_key_token to control the generation

of an RSA key pair, the public key exponent can be one of the following
values: 3, 65537 (216+1), or O (zero) to indicate that a full-random
exponent should be generated. The exponent field can be a null-length
field if the exponent value is zero.

018 ppp Prime number, p.
+nnn
+eee

018 qqq Prime number, q.
+nnn
+eee

+pPpp

018 rer dp = d mod(p-1).
+nnn
+eee
+ppp
+4dqq

018 SSS dq =d mod(g-1)
+nnn
+eee
+pPpp

+Qqqq
+rrr

018 uuu U = g-'mod(p)
+nnn
+eee
+Ppp

+4qq
+rrr

+SSS

Note:

¢ All length fields are in binary
¢ All binary fields (exponents, lengths, and so forth) are stored with the high-order byte first
(left, low-address, big endian, S/390 format).

key_name_length

The key_name_length parameter is a pointer to an integer variable containing
the number of bytes of data in the optional key_name variable. If this variable
contains zero, the key-name section is not included in the target token. If a key
name is to be included, the value must be 64 for this verb.

key_name

The key_name parameter is a pointer to a string variable containing the name

of the key. The name of the key can consist of the characters A...Z, 0...9, #, $,
@, or period (.), and must begin with an alphabetic character. See “Key-Label
Content” on page 7-2.

reserved_x_length(s)

The reserved_x_length parameters are each a pointer to an integer variable
containing the number of bytes of data in the corresponding reserved_x
variable. These variables are reserved for future use, and each variable should
contain zero.

3-18 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Key_ Token_Build

reserved_x(s)
The reserved_x parameters are each a pointer to a string variable that is
reserved for future use. Each of the reserved x parameters should contain a
null pointer.

token_length
The token_length parameter is a pointer to an integer variable containing the
number of bytes of data in the token variable. On output, the variable contains
the length of the token returned in the token variable. The maximum length is
2500 bytes.

token
The token parameter is a pointer to a string variable containing the assembled
token returned by the verb.

Related Information

Samples for the key_values_structure are shown below (and see the note following
the examples).

Chapter 3. RSA Key-Management 3-19

PKA_Key_Token_Build

CCA Release 2.52

Token Type Modulus Public Key-Values Structure (Hexadecimal) Structure
Length in Exponent Length
Bits (Bytes)
RSA-CRT 512 Random 0200 0000 0000 0000 0000 0000 0000 0000 0000 18
(0)
RSA-CRT 512 3 0200 0000 0001 0000 0000 0000 0000 0000 0000 03 19
RSA-CRT 512 65537 0200 0000 0003 0000 0000 0000 0000 0000 0000 21
010001
RSA-CRT 768 Random 0300 0000 0000 0000 0000 0000 0000 0000 0000 18
(0)
RSA-CRT 768 3 0300 0000 0001 0000 0000 0000 0000 0000 0000 03 19
RSA-CRT 768 65537 0300 0000 0003 0000 0000 0000 0000 0000 0000 21
010001
RSA-CRT 1024 Random 0400 0000 0000 0000 0000 0000 0000 0000 0000 18
(0)
RSA-CRT 1024 3 0400 0000 0001 0000 0000 0000 0000 0000 0000 03 19
RSA-CRT 1024 65537 0400 0000 0003 0000 0000 0000 0000 0000 0000 21
010001
RSA-CRT 2048 Random 0800 0000 0000 0000 0000 0000 0000 0000 0000 18
(0)
RSA-CRT 2048 3 0800 0000 0001 0000 0000 0000 0000 0000 0000 03 19
RSA-CRT 2048 65537 0800 0000 0003 0000 0000 0000 0000 0000 0000 21
010001
RSA-PRIV 512 Random 0200 0000 0000 0000 8
(0)
RSA-PRIV 512 3 0200 0000 0001 0000 3 9
RSA-PRIV 512 65537 0200 0000 0003 0000 010001 11
RSA-PRIV 768 Random 0300 0000 0000 0000 8
(0)
RSA-PRIV 768 3 0300 0000 0001 0000 3 9
RSA-PRIV 768 65537 0300 0000 0003 0000 010001 11
RSA-PRIV 1024 Random 0400 0000 0000 0000 8
(0)
RSA-PRIV 1024 3 0400 0000 0001 0000 3 9
RSA-PRIV 1024 65537 0400 0000 0003 0000 010001 11

Note: All values in the key_values_structure must be stored in “big endian” format
to ensure compatibility among different computing platforms. “Big endian” format

specifies the high-order byte be stored at the low address in the field.

Data stored by Intel architecture processors is normally stored in “little endian”
format. “Little endian” format specifies the low-order byte be stored in the low
address in the field.

3-20 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Key_ Token_Build

Required Commands
None

Chapter 3. RSA Key-Management 3-21

PKA_Key_Token_Change CCA Release 2.52

PKA_Key_Token_Change (CSNDKTC)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The PKA_Key_Token_Change verb changes RSA private keys from encipherment
with the old asymmetric master-key to encipherment with the current asymmetric
master-key. You identify the task with the rule-array keyword, and the internal
key-token to change with the key_identifier parameter.

Note: This verb is similar in function to the CSNBKTC Key_Token_Change verb
used with DES key tokens.

Certain implementations of CCA may not support this verb.

CSNDKTC

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

key_identifier_length In/Output Integer

key_identifier In/Output String key_identifier_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Figure 3-4. PKA_Key_Token_Change Rule_Array Keywords

Keyword Meaning

Encipherment type (required)

RTCMK Changes an RSA private key from encipherment with the old
asymmetric master-key to encipherment with the current
asymmetric master-key.

3-22 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Key_Token_Change

key_identifier_length
The key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the key_identifier variable. On
output, the variable contains the length of the key token returned by the verb if
a key token (not a key label) was specified. The maximum length is 2500
bytes.

key_identifier
The key_identifier parameter is a pointer to a string variable containing an
internal key-token or a key label of an internal key-token-record in key storage.
The private key within the token is securely reenciphered under the current
asymmetric master-key.

Required Commands

When you specify the reencipher option, the PKA_Key_Token_Change verb
requires the Token Change command (offset X'0102') to be enabled in the
hardware.

Chapter 3. RSA Key-Management 3-23

PKA_Public_Key_Extract CCA Release 2.52

PKA_Public_Key_Extract (CSNDPKX)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Public_Key_Extract verb is used to extract a public key from a
public-private key-pair. The public key is returned in a PKA public-key token.

Both the public key and the related private key must be present in the source key
token. The source private-key may be in the clear or may be enciphered.

Restrictions
None
Format
CSNDPKX
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer zero
rule_array Input String rule_array_count * 8 bytes
array
source_key._identifier_length Input Integer
source_key._identifier Input String source_key_identifier_length
bytes
target_key token_length In/Output Integer
target_key_token Output String target_key_token_length
bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array parameter is
not presently used by this verb, but must be specified.

source_key_identifier_length
The source_key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the source_key_identifier variable.
The maximum size that should be specified is 2500 bytes.

source_key_identifier
The source_key_identifier parameter is a pointer to a string variable containing
either a key label identifying a PKA key-storage record or a PKA96 key-token.

3-24 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Public_Key_Extract

target_key_token_length
The target_key_token_length parameter is a pointer to an integer variable
containing the number of bytes of data in the target_key_token variable. On
output, the variable contains the length of the key token returned by the verb.
The maximum length is 2500 bytes.

target_key_token
The target_key_token parameter is a pointer to a string variable containing the
PKA96 public-key token returned by the verb.

Required Commands
None

Chapter 3. RSA Key-Management 3-25

PKA_Public_Key_Hash_Register CCA Release 2.52

PKA_Public_Key_Hash_Register (CSNDPKH)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Public_Key_Hash_Register verb is used to register a hash value for a
public key in anticipation of verifying the public key offered in a subsequent use of
the PKA_Public_Key_Register verb.

Restrictions
None
Format
CSNDPKH
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one or two
rule_array Input String rule_array_count * 8 bytes
array
public_key_name Input String 64 bytes
hash_data_length Input Integer
hash_data Input String hash_data_length bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or
two for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword | Meaning

Hash type (required)

SHA-1 | The hash algorithm used to create the hash value.

Special usage (optional)

CLONE Indicates that the public key associated with this hash value
can be employed in a CCA node-cloning process provided
that this usage is confirmed when the public key is registered.

public_key_name
The public_key _name parameter is a pointer to a string variable containing the
name under which the registered public-key will be accessed.

3-26 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Public_Key_Hash_Register

hash_data_length
The hash_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the hash_data variable.

hash_data
The hash_data parameter is a pointer to a string variable containing the SHA-1
hash of a public-key certificate that will be offered with the use of the
PKA_Public_Key_Register verb. The format of the public-key certificate is
defined in “RSA Public-Key Certificate Section” on page B-17.

Required Commands

The PKA_Public_Key_Hash_Register verb requires the Register PKA Public Key
Hash command (offset X'0200') to be enabled in the hardware.

Chapter 3. RSA Key-Management 3-27

PKA_Public_Key_Register CCA Release 2.52

PKA_Public_Key_Register (CSNDPKR)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The PKA_Public_Key_Register verb is used to register a public key in the
cryptographic engine. Keywords in the rule array designate the subsequent
permissible uses of the registered public key.

The public key offered for registration must be contained in a token that contains a
certificate section. The public key value contained in the certificate will be the key
that is registered. A pre-registered hash value over the certificate section,
exclusive of the certificate signature bits, is used to independently validate the
offered key; see the PKA_Public_Key_Hash_Register verb and “RSA PKA
Key-Tokens” on page B-6.

None

CSNDPKR

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer zero or one

rule_array Input String rule_array_count * 8 bytes
array

public_key_name Input String 64 bytes

public_key_certificate_length Input Integer

public_key_cetrtificate Input String certificate_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero or
one for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Special usage (optional)

CLONE Indicates that the registered public-key can be employed in a
CCA node cloning process provided that this usage was also
asserted when the hash value was registered.

3-28 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Public_Key_Register

public_key_name
The public_key_name parameter is a pointer to a string variable containing the
name under which the registered public-key will be accessed.

public_key_certificate_length
The public_key_certificate_length parameter is a pointer to an integer variable
containing the number of bytes of data in the public_key_certificate variable.

public_key_certificate
The public_key_certificate parameter is a pointer to a string variable containing
a public key to be registered. The public key must be presented in an RSA
public-key certificate section; see “RSA Public-Key Certificate Section” on
page B-17.

Required Commands

The PKA_Public_Key_Register verb requires the PKA Public Key Register
command (offset X'0201"') to be enabled in the hardware.

If you specify the CLONE rule-array keyword, also enable the PKA Public Key
Register with Cloning command (offset X'0202").

Chapter 3. RSA Key-Management 3-29

CCA Release 2.52

3-30 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Chapter 4. Hashing and Digital Signatures

This chapter discusses the data hashing and the digital signature techniques you
can use to determine data integrity. A digital signature may also be used to
establish the non-repudiation security property. (Another approach to data integrity
based on DES message authentication codes is discussed in Chapter 6, “Data
Confidentiality and Data Integrity.”)

e Data integrity and data authentication techniques enable you to determine that
a data object (a string of bytes) has not been altered from some known state.

¢ Non-repudiation permits you to assert that the originator of a digital signature
may not later deny having created the digital signature.

This section explains how to determine the integrity of data. Determining data
integrity involves determining whether individual values of a string of bytes have
been altered. Two techniques are described:

 Digital signatures
e Hashing.

Digital signatures use both hashing and public-key cryptography.

Figure 4-1. Hashing and Digital Signature Services

Verb Page | Service Entry Svc
Point Len

Digital_Signature_Generate 4-4 This verb generates a digital signature. CSNDDSG E

Digital_Signature_Verify 4-7 This verb verifies a digital signature. CSNDDSV E

MDC_Generate 4-10 This verb generates a hash using the Modification CSNBMDG E
Detection Code (MDC) one-way function.

One_Way_Hash 4-13 This verb generates a hash using any of the SHA-1, MD5, CSNBOWH S/E
or RIPEMD160 one-way hashing functions.

Service location (Svc Len): E=Cryptographic Engine, S=Security API software

Hashing

Data hashing functions have long been used to determine the integrity of a block of
data. The application of a hash function to a data string produces a quantity called
a hash value (also referred to as a hash, a message digest, or a “fingerprint”).
Common hashing functions produce hash values of 128 or 160 bits. While many
different strings supplied to a given hashing function will produce the same
hash-value, it is computationally infeasible to determine a modification to a data
string that will result in a desired hash-value.

Hash functions for data integrity applications have a one-way property: given a
hash value, it is highly improbable that a second data string can be found that will
hash to the same value as the original. Consequently, if a hash value for a string
is known, you can compute the hash value for another string suspected to be the
same and compare the two hash values. If both hash values are identical, there is
a very high probability that the strings producing them are identical.

© Copyright IBM Corp. 1997, 2004 4-1

CCA Release 2.52

The CCA products support the following hash functions:

Secure Hash Algorithm-1 (SHA-1) The SHA-1 is defined in FIPS 180-1 and
produces a 20-byte, 160-bit hash value. The algorithm performs best on
big-endian, general purpose computers. This algorithm is usually preferred over
MDS5 if the application designers have a choice of algorithms. SHA-1 is also
specified for use with the DSS digital signature standard.

RIPEMD-160 RIPEMD-160 is a 160-bit cryptographic hash function, designed by
Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. It is intended to be used
as a secure replacement for the 128-bit hash functions MD4, MD5, and RIPEMD.
RIPEMD was developed in the framework of the EU project RIPE (RACE
Integrity Primitives Evaluation, 1988-1992).

Message Digest-5 (MD5) MD5 is specified in the Internet Engineering Task Force
RFC 1321 and produces (as with MDC) a 16-byte, 128-bit hash value. This
algorithm performs best on little-endian (for example, Intel), general purpose
computers.

Modification Detection Code (MDC) The MDC is based on the DES algorithm and
produces a 16-byte, 128-bit hash value. This hashing algorithm is considered
quite strong. However, it performs rapidly only when supported by
DES-hardware units specifically designed for MDC. See “Modification Detection
Code (MDC) Calculation Methods” on page D-3 for a description of the MDC
algorithm.

There are many different approaches to data integrity verification. In some cases,
you can simply make known the hash value for a data string. Anyone wishing to
verify the integrity of the data would recompute the hash value and compare the
result to the known-to-be-correct hash value.

In other cases, you might want someone to prove to you that they possess a
specific data string. In this case, you could randomly generate a challenge string,
append the challenge string to the string in question, and hash the result. You
would then provide the other party with the challenge string, ask them to perform
the same hashing process, and return the hash value to you. This method forces
the other party to re-hash the data. When the two hash values are the same you
can be confidant that the strings are the same, and the other party actually
possesses the data string, and not merely a hash value.

The hashing services described in this chapter allow you to divide a string of data
into parts, and compute the hash value for the entire string in a series of calls to
the appropriate verb. This can be useful if it is inconvenient or impossible to bring
the entire string into memory at one time.

Digital Signatures

4-2

You can protect data from undetected modification by including a
proof-of-data-integrity value. This proof of data integrity value is called a digital
signature, and relies on hashing (see “Hashing” above) and public-key

cryptography.

When you wish to sign some data you can produce a digital signature by hashing
the data and encrypting the results of the hash (the hash value) using your private
key. The encrypted hash value is called a digital signature.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Anyone with access to your public key can verify your information as follows:

1. Hash the data using the same hashing algorithm that you used to create the
digital signature.

2. Decrypt the digital signature using your public key.

3. Compare the decrypted results to the hash value obtained from hashing the
data.

An equal comparison confirms that the data they possess is the same as that which
you signed. The Digital_Signature_Generate and the Digital_Signature_Verity
verbs described in this chapter perform the hash encrypting and decrypting
operations. Their requirements are as follows:

¢ No one else should have access to your private key, and the use of the key
must be controlled so that someone else cannot sign data as though they were
you.

e The verifying party must have your public key. They assure themselves that
they do have your public key through the use of one-or-more certificates from
one-or-more Certification Authorities.

Note: The verification of public keys also involves the use of digital signatures;
however, this subject is outside the scope of this manual.

e The value that is encrypted and decrypted using RSA public-key technology
must be the same length in bits as the modulus of the keys. This bit-length is
normally 512, 768, 1024, or 2048. Since the hash value is either 128 or 160
bits in length, some process for formatting the hash into a structure for RSA
encrypting must be selected.

Unlike the DES algorithm, the strength of the RSA algorithm is sensitive to the
characteristics of the data being encrypted. The digital signature verbs (Verify
and Generate) support several different hash-value-formatting approaches.

The rule-array keywords for the digital signature verbs contain brief descriptions
of these formatting approaches:

— ANSI X9.31
— 1SO 9796-1
— PKCS #1 block type 00
— PKCS #1 block type 01
(RSA PKCS #1 v2.0 standard, RSASSA-PKCS1-v1_5)
— Padding with zero bits.

You can also validate a digital signature using the PKA_Encrypt verb (CSNDPKE,
see page 5-75) with the ZERO-PAD option in Release 2.50 and later.!

The receiver of data signed using digital signature techniques can, in some cases,
assert non-repudiatior? of the data. The use of digital signatures in legally binding
situations is gaining favor as commerce is increasingly conducted through
networked communications. The techniques described in this chapter support the
most common methods of digital signing currently in use.

1 Release 2.50 currently applies only to the CCA implementation on the IBM eServer iSeries.

the data.

2 Non-repudiation means that the originator of the digital signature cannot later deny having originated the signature and, therefore,

Chapter 4. Hashing and Digital Signatures 4-3

Digital_Signature_Generate

CCA Release 2.52

Digital_Signature_Generate (CSNDDSG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Digital_Signature_Generate verb is used to generate a digital signature.

You specify:

e The RSA private key
e For X9.31, the hash formatting method
¢ The hash value

e The address where the verb returns the digital signature.

The hash quantity may be created through use of the One_Way_Hash or the

MDC_Generate verbs.

Restrictions
e A private key flagged as a key-management-only key (in private-key-section
offset 50) is not usable in this verb. See page 3-14 and page 3-7.
e Not all IBM implementations of this verb may support an optimized form of the
RSA private key, however, the IBM 4758 product family implementation of this
verb does support an optimized RSA private key (“Chinese Remainder” form).
¢ Not all CCA implementations support each formatting method.
e The modulus-length (key-length) of a key used with ANSI X9.31 digital
signatures must be one of 1024, 1280, 1536, 1792, or 2048 bits.
Format
CSNDDSG
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer zero, one, or two
rule_array Input String array rule_array_count * 8 bytes
PKA_private_key_identifier_length Input Integer
PKA_private_key._identifier Input String PKA_private_key_identifier_length
bytes
hash_length Input Integer
hash Input String hash_length bytes
signature_field_length In/Output Integer
signature_bit_length Output Integer
signature_field Output String signature_field_length bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero,

one, or two.

4-4 |BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Digital_Signature_Generate

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Digital-signature-hash formatting method (one, optional)

X9.31 Formats the hash according to the ANSI X9.31 standard and
generates the digital signature.

PKCS-1.1 Calculates the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 01. The
RSA PKCS #1 standard refers to this as
RSASSA-PKCS1-v1_5 when you BER encode the hash as
described under the second note to the hash parameter. See
“PKCS #1 Formats” on page D-19.

1ISO-9796 Formats the hash according to the ISO 9796-1 standard and
generates the digital signature. This is the default. See
“Formatting Hashes and Keys in Public-Key Cryptography” on
page D-19.

PKCS-1.0 Calculates the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 00. See
“PKCS #1 Formats” on page D-19.

ZERO-PAD Places the supplied hash-value in the low-order bit positions
of a bit-string of the same length as the modulus. Sets all
non-hash-value bit positions to zero. Ciphers the resulting
bit-string to obtain the digital signature.

Hashing method specification

When using X9.31 formatting, specify one.

SHA-1 Hash generated using the SHA-1 algorithm.
RPMD-160 Hash generated using the RIPEMD-160 algorithm.
Notes:

1. The hash for PKCS-1.1 and PKCS-1.0 should have been created using
MD5 or SHA-1 algorithms.

2. The hash for ISO-9796 and ZERO-PAD can be obtained by any hashing
method.

3. See “Formatting Hashes and Keys in Public-Key Cryptography” on
page D-19 for a discussion of hash formatting methods.

PKA_private_key_identifier_length

The PKA_private_key_identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
PKA_private_key_identifier variable. The maximum length is 2500 bytes.

PKA_private_key_identifier

The PKA_private_key._identifier parameter is a pointer to a string variable
containing either a key label identifying a key-storage record or retained key, or
an internal public-private key token.

Chapter 4. Hashing and Digital Signatures ~ 4-5

Digital_Signature_Generate CCA Release 2.52

hash_length
The hash_length parameter is a pointer to an integer variable containing the
number of bytes of data in the hash variable.

hash
The hash parameter is a pointer to a string variable containing the information
to be signed.

Notes:

1. For ISO-9796, the information identified by the hash parameter must be
less than or equal to one-half of the number of bytes required to contain
the modulus of the RSA key. Although ISO 9796-1 allows messages of
arbitrary bit length up to one-half of the modulus length, this verb requires
the input text to be a byte multiple up to the correct maximum length.

2. For PKCS-1.0 or PKCS-1.1, the information identified by the hash
parameter must be at least 11 bytes shorter than the number of bytes
required to contain the modulus of the RSA key, and should be the ANS.1
BER encoding of the hash value.

You can create the BER encoding of an MD5 or SHA-1 value by
prepending these strings to the 16-byte or 20-byte hash values,
respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410"
SHA-1 X'30213009 06052B0OE 03021A05 000414

3. For ZERO-PAD, the information identified by the hash parameter must be
less than or equal to the number of bytes required to contain the modulus
of the RSA key.

4. See “Formatting Hashes and Keys in Public-Key Cryptography” on
page D-19 for a discussion of hash formatting methods.

signature_field_length
The signature_field_length parameter is a pointer to an integer variable
containing the number of bytes of data in the signature_field variable. On
output, if the size is sufficient, the variable contains the actual length of the
digital signature returned by the verb. The maximum length is 256 bytes.

signature_bit_length
The signature_bit_length parameter is a pointer to an integer variable
containing the number of bits of data of the digital signature returned in the
signature_field variable.

signature_field
The signature_field parameter is a pointer to a string variable containing the
stored digital signature. Unused bytes at the right of the field are undefined
and should be ignored. The digital signature bit-field is in the low-order bits of
the byte string containing the digital signature.

Required Commands

The Digital_Signature_Generate verb requires the Digital Signature Generate
command (offset X'0100"') to be enabled in the hardware.

4-6 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Digital_Signature_Verify

Digital_Signature_Verify (CSNDDSV)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Digital_Signature_Verify verb is used to verify a digital signature.

Provide the digital signature, the public key, the hash formatting method, and the
hash of the data to be validated. The hash quantity may be created through use of
the One_Way_Hash or the MDC_Generate verbs.

For RSA, the hash formatting method is selected through keywords in the rule
array. The supplied hash information is formatted and compared to the public-key
ciphered digital signature.

If the digital signature is validated, the verb returns a return code of zero. If the

digital signature is not validated, and there are no other problems, the verb returns
a return code of 4 and reason code of 429 (decimal).

Not all CCA implementations support each formatting method.

CSNDDSV

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer zero or one

rule_array Input String rule_array_count * 8 bytes
array

PKA_public_key_identifier length Input Integer

PKA_public_key._identifier Input String PKA_public_key_identifier_length

bytes

hash_length Input Integer

hash Input String hash_length bytes

signature_field_length Input Integer

signature_field Input String signature_field_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero or
one.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Chapter 4. Hashing and Digital Signatures ~ 4-7

Digital_Signature_Verify CCA Release 2.52

Keyword Meaning

Digital-signature-hash formatting method (one, optional, for RSA)

X9.31 Format the hash according to the ANSI X9.31 standard and
compare to the digital signature. See “Formatting Hashes and
Keys in Public-Key Cryptography” on page D-19.

PKCS-1.1 Format the hash as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 01 and
compare to the digital signature. The RSA PKCS #1 standard
refers to this as RSASSA-PKCS-v1_5 when you BER encode
the hash as described under the second note to the hash
parameter. See “PKCS #1 Formats” on page D-19.

1ISO-9796 Format the hash according to the ISO 9796-1 standard and
compare to the digital signature. This is the default. See
“Formatting Hashes and Keys in Public-Key Cryptography” on
page D-19.

PKCS-1.0 Format the hash as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 00 and
compare to the digital signature. See “PKCS #1 Formats” on
page D-19.

ZERO-PAD The supplied hash value is placed in the low-order bit
positions of a bit-string of the same length as the modulus
with all non-hash-value bit positions set to zero. After
ciphering the supplied digital signature, the result is compared
to the hash-extended bit string.

Notes:

1. The hash for PKCS-1.1 and PKCS-1.0 should have been created using
MD5 or SHA-1 algorithms.

2. The hash for ISO-9796 and ZERO-PAD can be obtained by any hashing
method.

PKA_public_key_identifier_length
The PKA_public_key_identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
PKA_public_key_identifier variable. The maximum length is 2500 bytes.

PKA_public_key_identifier
The PKA_public_key_identifier parameter is a pointer to a string variable
containing either a key label identifying a key-storage record or a registered
public-key, or a key token.

hash_length
The hash_length parameter is a pointer to an integer variable containing the
number of bytes of data in the hash variable.

hash
The hash parameter is a pointer to a string variable containing the hash
information to be verified.

4-8 |BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Digital_Signature_Verify

Notes:

1. For ISO-9796, the information identified by the hash parameter must be
less than or equal to one-half of the number of bytes required to contain
the modulus of the RSA key. Although ISO 9796-1 allows messages of
arbitrary bit length up to one-half of the modulus length, this verb requires
the input text to be a byte multiple up to the correct maximum length.

2. For PKCS-1.0 or PKCS-1.1, the information identified by the hash
parameter must be 11 bytes shorter than the number of bytes required to
contain the modulus of the RSA key, and should be the ANS.1 BER
encoding of the hash value.

You can create the BER encoding of an MD5 or SHA-1 value by
prepending these strings to the 16-byte or 20-byte hash values,
respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410"
SHA-1 X'30213009 06052B0OE 03021A05 000414

3. For ZERO-PAD, the information identified by the hash parameter must be
less than or equal to the number of bytes required to contain the modulus
of the RSA key.

signature_field_length
The signature_field_length parameter is a pointer to an integer variable
containing the number of bytes of data in the signature_field variable.

signature_field
The signature_field parameter is a pointer to a string variable containing the
digital signature. The digital signature bit-field is in the low-order bits of the
byte string containing the digital signature.

Required Commands

The Digital_Signature_Verify verb requires the Digital Signature Verify command
(offset X'0101') to be enabled in the hardware.

Chapter 4. Hashing and Digital Signatures ~ 4-9

MDC_Generate CCA Release 2.52

MDC_Generate (CSNBMDG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Use the MDC_Generate verb to create a 128-bit (16-byte) hash value on a data
string whose integrity you intend to confirm. After using this verb to generate an
MDC, you can compare the MDC to a known value or communicate the value to
another entity so that they may compare the MDC hash value to one that they
calculate.

The MDC_Generate verb allows you to:

e Specify the two or four encipherment version of the algorithm
e Segment your text into a series of verb calls.

You can also use the verb as a keyed hash algorithm. See the Related Information
at the end of this verb description.

Specifying Two or Four Encipherments: Four encipherments per round of the
algorithm will improve security; two encipherments per round of the algorithm will
improve performance. To specify the number of encipherments, use keywords
MDC-2, MDC-4, PADMDC-2, or PADMDC-4 with the rule_array parameter. Two
encipherments create results that differ from four encipherments; ensure that you
use the same number of encipherments to verify the MDC.

For a description of the MDC calculations, see “Modification Detection Code (MDC)
Calculation Methods” on page D-3.

Segmenting Text: The MDC_Generate verb lets you segment text into a series of
verb calls. If you can present all of the data to be hashed in a single invocation of
the verb, use the rule array keyword ONLY. You can segment your text and
present the segments with a series of verb calls. Use the rule array keywords
FIRST and LAST for the first and last segments. If you use more than two
segments, use the rule array keyword MIDDLE for the additional segment(s).

Between verb calls, the implementation stores unprocessed text data and
intermediate information from the partial MDC calculation in the chaining_vector
variable and the MDC key in the MDC variable. During segmented processing, the
application program must not change the data in either of these variables.

Restrictions

e When padding is requested (by specifying a process rule of PADMDC-2 or
PADMDC-4 in the rule_array variable), a text length of zero is valid for any
segment-control specified in the rule_array variable FIRST, MIDDLE, LAST, or
ONLY). When LAST or ONLY is specified, the supplied text will be padded
with X'FF' bytes and a padding count in the last byte to bring the total text
length to the next multiple of 8 that is greater than or equal to 16.

¢ When no padding is requested (by specifying a process rule of MDC-2 or
MDC-4 in the rule_array variable), the total length of text provided (over a
single or segmented calls) must be at least 16 bytes and a multiple of 8 bytes.
For segmented calls, a text length of zero is valid on any of the calls.

4-10 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Format

Parameters

MDC_Generate

CSNBMDG

return_code Input Integer

reason_code Input Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

text_length Input Integer

text Input String text_length bytes

rule_array_count Input Integer

rule_array Input String rule_array_count * 8 bytes
array

chaining_vector In/Output String 18 bytes

MDC In/Output String 16 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

text_length
The text_length parameter is a pointer to an integer variable containing the
length (in bytes) of text to process.

text
The text parameter is a pointer to a string variable containing the text for which
the verb calculates the MDC value.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule array. The value of the rule_array_count
must be zero, one, or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The keywords
are eight-bytes in length, and must be left-justified and padded on the right with
space characters. The rule_array keywords are shown below:

Figure 4-2 (Page 1 of 2). MDC_Generate Rule_Array Keywords

Keyword Meaning

Segmenting and Key Control (one, optional)

ONLY Specifies that segmenting is not used and the default key is
used. This is the default.

FIRST Specifies the first segment of text, and use of the default key.

MIDDLE Specifies an intermediate segment of text, or the first segment

of text and use of a user-supplied key.

LAST Specifies the last segment of text, or that segmenting is not
used, and use of a user-supplied key.

Chapter 4. Hashing and Digital Signatures ~ 4-11

MDC_Generate

CCA Release 2.52

Figure 4-2 (Page 2 of 2). MDC_Generate Rule_Array Keywords

Keyword

Meaning

Algorithm Mode (one, optional)

PADMDC-2

Specifies two encipherments for each eight-byte block using
PADMDC procedures.

PADMDC-4

Specifies four encipherments for each eight-byte block using
PADMDC procedures.

MDC-2

Specifies two encipherments for each eight-byte block using
MDC procedures. This is the default.

Note: Use of the MDC-2 mode is not recommended.

MDC-4

Specifies four encipherments for each eight-byte block using
MDC procedures.

Note: Use of the MDC-4 mode is not recommended.

Chaining_Vector

The chaining_vector parameter is a pointer to an 18-byte string variable the
security server uses as a work area to hold segmented data between verb

invocations.

Note: When segmenting text, the application program must not change the
data in this string between verb calls to the MDC_Generate verb.

MDC

The MDC parameter is a pointer to a user-supplied MDC key or to a 16-byte
string variable containing the MDC value. This value can be the key that the
application program provides. This field is also used to hold the intermediate
MDC result when segmenting text.

Note: When segmenting text, the application program must not change the
data in this string between verb calls to the MDC_Generate verb.

Required Commands

The MDC_Generate verb requires the Generate MDC command (offset X' 008A")
to be enabled in the hardware.

Related Information

The MDC_Generate verb uses a default key when you specify ONLY or FIRST
keywords. If you want to use the MDC as a keyed-hash algorithm, place your key

4-12

into the MDC variable and ensure that the chaining_vector variable is set to null (18
Then for a single segment of text, use the LAST keyword. For
multiple segments of text, begin with the MIDDLE keyword and then proceed to use
additional calls specifying MIDDLE as required and finally LAST; as with the default
key, you must not alter the value of the MDC or chaining_vector variables between

bytes of X'00").

calls.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

One_Way_Hash

One_Way_Hash (CSNBOWH)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

The One_Way_Hash verb obtains a hash value from a text string using the MD5,
SHA-1, or RIPEMD-160 hashing methods, as you specify in the rule_array.

You can provide all of the data to be hashed in a single call to the verb, or you can
provide the data to be hashed using multiple calls. Keywords that you supply in the
rule_array inform the verb of your intention.

For the SHA-1 hash process, the verb hashes text strings of 8192 bytes or longer
using the Coprocessor hardware, with shorter text strings hashed by software in the
host computer. It is faster to process short text strings in the host computer, while
it is faster to process long strings in the Coprocessor.

The SHA-1 method is specified in FIPS 180-1, May 31, 1994. The MD5 method is
specified in RFC 1321, dated April 1992. The RIPEMD-160 method is an
outgrowth of the EU project RIPE (RACE Integrity Primitives Evaluation); further
information can be found on the Internet under “RIPEMD.”

Note: Hashing can also be performed using the MDC_Generate verb
(CSNCMDG) for the (MDC-2, MDC-4,) PADMDC-2, and PADMDC-4 methods.

If FIRST or MIDDLE calls are made, the text size must be a multiple of the
algorithm block size: 64 bytes.

This verb requires that text to be hashed be a multiple of eight bits aligned in bytes.
Only data that is a byte multiple can be hashed. (These are not requirements of
the standards.)

CSNBOWH
return_code Output Integer
reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one or two

rule_array Input String rule_array_count * 8 bytes
array

text_length Input Integer

text Input String text_length bytes

chaining_vector_length Input Integer 128 bytes

chaining_vector In/Output String chaining_vector_length bytes

hash_length Input Integer 16 or 20 bytes

hash In/Output String hash_length bytes

Chapter 4. Hashing and Digital Signatures 4-13

One_Way_Hash

Parameters

CCA Release 2.52

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one or
two for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Hash method (one required)

MD5 Specifies the use of the MD5 method.

SHA-1 Specifies the use of the SHA-1 method.

RPMD-160 Specifies the use of the RIPEMD-160 method.

Chaining control (one, optional)

FIRST Specifies the first in a series of calls to compute the hash;
intermediate results are stored in the hash variable.

MIDDLE Specifies this is not the first nor the last in a series of calls to
compute the hash; intermediate results are stored in the hash
variable.

LAST Specifies the last in a series of calls to compute the hash;
intermediate results are retrieved from the hash variable.

ONLY Specifies the only call made to compute the hash. This is the
default.

text_length

The text_length parameter is a pointer to an integer variable containing the
number of bytes of data in the text variable. The maximum length on OS/400
systems is 64MB - 64 bytes and on the other systems is 32MB - 64 bytes.

Note: If FIRST or MIDDLE calls are made, the text size must be a multiple of
the algorithm block-size.

text
The text parameter is a pointer to a string variable containing the data on which
the hash value is computed.

chaining_vector_length
The chaining_vector_length parameter is a pointer to an integer variable
containing the number of bytes of data in the chaining_vector variable. The
value must be 128 for this verb.

chaining_vector
The chaining_vector parameter is a pointer to a string variable containing a
work area used by this verb. Application programs must not alter the contents
of this field between related FIRST, MIDDLE, and LAST calls.

4-14 |BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 One_Way_Hash

hash_length
The hash_length parameter is a pointer to an integer variable containing the
number of bytes of data in the hash variable. This value must be at least 16
bytes for MD5, and at least 20 bytes for SHA-1. The maximum length is 128
bytes.

hash
The hash parameter is a pointer to a string variable containing the hash value
returned by the verb. With use of the FIRST or MIDDLE keywords, the hash
variable receives intermediate results.

Required Commands

Calculation of a SHA-1 hash with a text length greater than 8192 bytes requires the
SHA-1 command (command offset X'0107"') to be enabled in the hardware.

Chapter 4. Hashing and Digital Signatures 4-15

CCA Release 2.52

4-16 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Chapter 5.

DES Key-Management

This chapter describes verbs to perform basic CCA DES key-management
functions. Figure 5-1 lists the verbs covered in this chapter. Introductory material
is presented under these topics:

e Understanding CCA DES Key-Management

e Control vectors, key types, and key-usage restrictions
» Key tokens, key labels, and key identifiers

e Using the key-processing and key-storage verbs

e Security precautions.

Figure 5-1 (Page 1 of 2). Basic CCA DES Key-Management Verbs

Verb Page | Service Entry Sve
Point Len

Clear_Key_Import 5-22 Enciphers a clear key under the symmetric master-key, CSNBCKI E
and updates or creates an internal key-token for a DATA
key. (Also see Multiple_Clear_Key_Import.)

Control_Vector_Generate 5-24 Builds a control vector from keywords. CSNBCVG

Control_Vector_Translate 5-26 Changes the control vector associated with a key in an CSNBCVT
external key-token.

Cryptographic_Variable_Encipher | 5-29 Encrypts modest quantities of data using a unique CSNBCVE E
key-class, CVARENC. The service is used to prepare the
mask-array variable for the Control_Vector_Translate verb.

Data_Key_Export 5-31 Exports a DES data-key and creates an external key-token CSNBDKX E
that contains a null control vector.

Data_Key_Import 5-33 Imports a DES data-key and creates an internal key-token CSNBDKM E
for the key.

Diversified_Key_Generate 5-35 Generates a DES key based on supplied information and a CSNBDKG E
key-generating key. The verb often finds use in generating
keys for use with smart-cards.

Key_Export 5-42 Exports a DES key and creates an external key-token. CSNBKEX

Key_Generate 5-44 Generates a random DES key or DES key pair, enciphers CSNBKGN
the keys, and updates or creates internal or external
key-tokens.

Key_Import 5-51 Imports a DES key or a key-token, and updates an internal CSNBKIM E
key-token or creates an internal key-token.

Key_Part_Import 5-54 Combines clear key parts, enciphers the key, and updates CSNBKPI E
an internal key-token.

Key_Test 5-58 Generates or verifies a verification pattern for keys and key CSNBKYT E
parts.

Key_Token_Build 5-61 Creates a DES key-token from supplied information. CSNBKTB

Key_Token_Change 5-64 Reenciphers a DES key from the old symmetric CSNBKTC E
master-key to the current symmetric master-key.

Key_Token_Parse 5-66 Parses a DES key-token and provides the contents as CSNBKTP S
individual variables.

Key_Translate 5-69 Changes the encipherment of a key from one CSNBKTR E
key-encrypting key to another key-encrypting key.

Multiple_Clear_Key_lmport 5-71 Imports DES keys to form a double-length DES data-key. CSNBCKM E
(Also see Clear_Key_Import.)

Service location (Svc Len): E=Cryptographic Engine, S=Security API software

© Copyright IBM Corp. 1997, 2004 5-1

CCA Release 2.52

Figure 5-1 (Page 2 of 2). Basic CCA DES Key-Management Verbs

Verb Page | Service Entry Sve
Point Len
PKA_Decrypt 5-73 Uses an RSA private-key to decrypt a symmetric key CSNDPKD E
formatted in an RSA DSI PKDS #1 block type 2 structure
and return the symmetric key in the clear.
PKA_Encrypt 5-75 Uses an RSA public-key to encrypt a clear symmetric-key CSNDPKE E
in an RSA DSI PKCS #1 block type 2 structure and return
the encrypted key.
Using the ZERO-PAD option, you can encipher information
including a hash to validate digital signatures such as ISO
9796-2.
PKA_Symmetric_Key_Export 5-78 Exports a symmetric key under an RSA public key. CSNDSYX
PKA_Symmetric_Key_Generate 5-81 Generates a new DES key and returns one copy CSNDSYG
multiply-enciphered under the symmetric master-key or a
DES key-encrypting key and another copy enciphered
under an RSA public key.
PKA_Symmetric_Key_Import 5-86 Imports a symmetric key under an RSA private key. CSNDSYI
Prohibit_Export 5-90 Modifies a key so it can no longer be exported. CSNBPEX
Random_Number_Generate 5-91 Generates a random number. CSNBRNG

Service location (Svc Len): E=Cryptographic Engine, S=Security API software

Understanding CCA DES Key-Management

The DES algorithm operates on 64 data-bits at a time (eight bytes of 8-bit-per-byte
data). The results produced by the algorithm are controlled by the value of a key

that you supply. Each byte of the key contains 7 bits of key information plus a

parity bit (the low-order bit in the byte). The parity bit is set so that there is an odd
number of one bits for each key byte. The parity bits do not participate in the DES

algorithm.

The DES algorithm is not secret. However, by using a secret key, the algorithm

can produce ciphertext that is impossible (for all practical purposes) to decrypt

without knowing the secret key. The requirement to keep a key secret, and to have
the key available at specific place(s) and time(s), produces a set of activities known

collectively as key management.

Because the secrecy and reliability of DES-based cryptography is strongly related
to the secrecy, control, and use of DES keys, the following aspects of key

management are important:

e Securing a cryptographic facility or process. The hardware provides a secure,
tamper-resistant environment for performing cryptographic operations and for
storing cryptographic keys in the clear. The hardware provides cryptographic
functions as a set of commands that are selectively enabled under different
roles. To activate a profile and its role to enable different hardware capabilities,

users (programs or persons) must supply identification and a password for
verification. Using these capabilities, you can control the use of sensitive

key-management capabilities.

e Separating key types to restrict the use of each key. A user or a process
should be restricted to performing only the processes that are required to
accomplish a specific task. Therefore, a key should be limited to a set of

5-2 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

functions in which it can be used. The cryptographic subsystem uses a system
of control vectors' to separate the cryptographic keys into a set of key types
and restrict the use of a key. The subsystem enforces the use of a particular
key type in each part of a cryptographic command. To control the use of a
key, the control vector is combined with the key that is used to encipher the
control vector's associated key. For example, a key that is designated a
key-encrypting key cannot be employed in the decipher verb, thereby
preventing the use of a key-encrypting key to obtain a cleartext key.

e Securely installing and verifying keys. Capabilities are provided to install keys,
either in whole or in parts, and to determine the integrity of the key or the key
part to ensure the accurate and secure entry of key information. The hardware
commands and profiles allow you to enforce a split-knowledge, dual-control
security policy in the installation of keys from clear information.

e Generating keys. The system can generate random clear and enciphered
keys. The key-generation service creates an extensive set of key types for use
in both CCA subsystems and other DES-based systems. Keys can be
generated for local use and for distribution to remote nodes.

e Securely distributing keys manually and electronically. The system provides for
unidirectional key-distribution channels and a key-translation service.

Your application program(s) should provide procedures to perform the following
key-management activities:

* Generating and periodically replacing keys. A key should be used for a very
limited period of time. This may minimize the resulting damage should an
adversary determine the value of a key.

e Archiving keys.
e Destroying keys and media used to distribute keys.

* Auditing the key generation, distribution, installation, archiving, and destruction
processes.

* Reacting to unusual occurrences in the key-management process.

e Creating management controls for key management.

Before a key is removed from a CCA cryptographic facility for storage in key
storage or in application storage, the key is multiply-enciphered under a master key
or another key-encrypting key. The master key is a triple-length DES key
composed of three 56-bit DES keys. The first and the second parts of a master
key (each 56-bit component) are required to be unique. For compatibility with other
implementations, it is permissible for the third part to be the same as the first part,
thus creating an effective “double-length” master-key.

Key-encrypting keys, sometimes designated “transport keys,” are double-length
DES keys composed of two halves, each half being a 56-bit DES key. The halves
of a key-encrypting key can be the same value, in which case the key-encrypting
key operates as though it were a single-length, 56-bit, DES key.

1A control vector is a logical extension of a key variant, which is a method of key separation that some other cryptographic systems
use.

Chapter 5. DES Key-Management 5-3

CCA Release 2.52

A key that is multiply-enciphered under the master key is an operational key (OP).
The key is operational because a cryptographic facility can use the master key to
multiply-decipher it to obtain the original key-value. A key that is
multiply-enciphered under a key-encrypting key (other than the master key) is
called an external key. Two types of external keys are used at a cryptographic
node:

e An importable key (IM) is enciphered under an operational key-encrypting key
(KEK) whose control vector provides key-importing authority.

e An exportable key (EX) is enciphered under an operational KEK whose control
vector provides key-exporting authority.

Control Vectors

5-4

The CCA cryptographic commands form a complete, consistent, secure command
set that performs within tamper-resistant hardware. The cryptographic commands
use a set of distinct key types that provide a secure cryptographic system that
blocks many attacks that can be directed against it.

CCA implementations use a control vector to separate keys into distinct key types
and to further restrict the use of a key. A control vector is a non-secret value that
is carried in the clear in the key token along with the encrypted key that it specifies.

A control vector is cryptographically associated with a key by being exclusive-ORed
with a master key or another key-encrypting key to form a key that is used to
multiply-encipher or multiply-decipher the key being associated with the control
vector. This permanently binds the type and use of the key to the key. Any
change to the original control vector would result in later recovering an altered
key-value. If the control vector used to decipher a key is different from the control
vector that was used to encipher the same key, the correct clear key cannot be
recovered. The key-encipherment processes are described in detail at “CCA Key
Encryption and Decryption Processes” on page C-12.

After a key is multiply-enciphered, the originator of the key can ensure that the
intended use of the key is preserved by giving the key-encrypting key only to a
system that implements the CCA control vector design and that is managed by an
audited organization.

Key-encrypting keys in CCA are double-length keys. A double-length DES key
consists of two (single-length) 56-bit DES keys that are used together as one key.
The first half (left half) of a double-length key, and all of a single-length key, are
multiply-enciphered using the exclusive-OR of the encrypting key and the control
vector. The second half (right half) of a double-length key is multiply-enciphered
using the exclusive-OR of the encrypting key and a modification of the control
vector; the modification consists of the reversal of control vector bits 41 and 42.

Appendix C, “CCA Control-Vector Definitions and Key Encryption” provides detailed
information about the construction of a control-vector value and the process for
encrypting a CCA DES key.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Checking a Control Vector Before Processing a Cryptographic

Command
Before a CCA cryptographic facility processes a command that uses a
multiply-enciphered key, the facility’s logic checks the control vector associated with
the key. The control vector must indicate a valid key type for the requested
command, and any control-vector restriction (key-usage) bits must be set
appropriately for the command. If the command permits use of the control vector,
the cryptographic facility multiply-deciphers the key and uses the key to process the
command. (Alteration of the control-vector value to permit use of the key in the
command would result in recovery of a different, unpredictable key value.)

Figure 5-2 shows the flow of cryptographic command processing in a cryptographic

facility.
At the CCA API...
Verb—Call Key Token Data
Cryptographic Control Enciphered Data
Command Vector Key
Tamper
Resistant Control
Cryptographic ——|Vector
Facility Checking
Master Key—|Exclusive
(or KEK) —0R v
L————————> Multiply
Decipher
v
Clear Key
Process
Result

Figure 5-2. Flow of Cryptographic Command Processing in a Cryptographic Facility

Key Types
The CCA implementation in this product defines DES key-types as shown in
Figure 5-3 on page 5-7. The key type in a control vector determines the use of
the key, which verbs can use the key, and whether the cryptographic facility
processes a key as a symmetric or “asymmetric” DES key. By differentiating keys
with a control vector, a given key-value can be multiply-enciphered with different
control vectors so as to impart different capabilities to copies of the key. This
technique creates DES keys having an asymmetric property.

e Symmetric DES keys. A symmetric DES key can be used in two related
processes. The cryptographic facility can interpret the following key types as
symmetric:

— CIPHER and DATA. A key with these key types can be used to both
encipher and decipher data.

— MAC. A key with this key type can be used to create a
message-authentication code (MAC) and to verify a trial MAC.

Chapter 5. DES Key-Management 5-5

CCA Release 2.52

e Asymmetric DES keys. An asymmetric DES key is a key in a key pair in which
the keys are used as opposites.

— ENCIPHER and DECIPHER. Used to only encrypt data versus only to
decrypt data.

— MAC and MACVER. Used in generating (and verifying) a MAC versus only
verifying a MAC.

— PINGEN and PINVER. Used in generating (and verifying) a personal
identification number (PIN) versus only verifying a PIN.

— OPINENC and IPINENC. Used to only encrypt a PIN block versus only to
decrypt a PIN block.

Likewise these unusual key types are paired for other opposite purposes:
— CVARENC and CVARXCVL
— CVARENC and CVARXCVR.

The cryptographic facility also interprets key-encrypting keys with the following
key types as asymmetric keys that can be used to create one-way
key-distribution channels:

— EXPORTER or OKEYXLAT. A key with this key type can encipher a key at
a node that “exports” a key.

— IMPORTER or IKEYXLAT. A key with this key type can decipher a key at
a node that “imports” the key.

An EXPORTER Kkey is paired with an IMPORTER or an IKEYXLAT key. An
IMPORTER key is paired with an EXPORTER or an OKEYXLAT key. These
key types permit the establishment of a unidirectional key-distribution channel
which is important both to preserve the asymmetric capabilities possible with
CCA-architecture systems, and to further secure a key-distribution system from
unintended key-distribution possibilities.

For information about generating key pairs, see “Generating Keys” on
page 5-16.

Depending on the key type, a key can be single or double in length. A
double-length key that has different values in its left and right halves greatly
increases the difficulty for an adversary to obtain the clear value of the enciphered
quantity. A double-length key that has the same values in its left and right halves
produces the same results as a single-length key and therefore has the strength of
a single-length key. See Figure 5-3 on page 5-7.

Some verbs can create a default control-vector for a key type. For information
about the values for these control vectors, see Appendix C, “CCA Control-Vector
Definitions and Key Encryption.”

Key-Usage Restrictions

5-6

In addition to a key type and subtype, a control vector contains key-usage values
that further restrict the use of a key. Most key types define a default set of
key-usage restrictions in a control vector. See Figure C-2 on page C-3.
Key-usage restrictions can be varied by using keywords when constructing
control-vector values using the Key_Token_Build verb or the
Control_Vector_Generate verb, or by manually setting bits in the control vector.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Figure 5-4 on page 5-9 shows the key-type, key subtype, and key-usage keywords
that can be combined in the Control_Vector_Generate verb and the
Key_Token_Build verb to build a control vector. The left column lists the key types,
the middle column lists the subtype keywords, and the right column lists the
key-usage keywords that further define a control vector. Figure 5-5 on page 5-10
describes the control-vector-usage keywords.

For information about the control vector bits, see Appendix C, “CCA Control-Vector
Definitions and Key Encryption.”

Figure 5-3 (Page 1 of 2). Key Types and Verb Usage

Key Type Usable with Verbs

Cipher Class (Data Operation Keys)

These keys are used to cipher text. In operational form and in external form, these keys
are associated with a control vector.

CIPHER Encipher, Decipher
ENCIPHER Encipher
DECIPHER Decipher

MAC Class (Data Operation Keys)

These keys are used to generate and verify a message-authentication code (MAC). In
operational form and in external form, these keys are associated with a control vector.

MAC MAC_Generate, MAC_Verify

MACVER MAC_Verify

DATA Class (Data Operation Keys)

These keys are used to cipher text and to produce and verify message-authentication
codes. In operational form, these keys are always associated with a control vector. In
external form, the DATA key-type keys are not usually associated with a control vector.

DATA Encipher, Decipher, MAC_Generate, MAC_Verify
DATAC Encipher, Decipher

DATAM MAC_Generate, MAC_Verify

DATAMV MAC_Verify

Secure Messaging Class (Data Operation Keys)

These keys are used to encrypt keys or PINs. They are double-length keys. In
operational form and in external form, these keys are associated with a control vector.

SECMSG Diversified_Key_Generate

Note: This key-type is added in release 2.30 in
anticipation of additional verbs that employ the key
type in a future release.

Key-Encrypting-Key Class

These keys are used to cipher other keys. They are double-length keys. In operational
form and in external form, these keys are associated with a control vector.

EXPORTER Data_Key_Export, Key_Export, Key_Generate,
Key_Translate, Control_Vector_Translate

IMPORTER Data_Key_Import, Key_Import, Key_Generate,
Key_Translate, Control_Vector_Translate,
Secure_Key_Import

Chapter 5. DES Key-Management 5-7

5-8

CCA Release 2.52

Figure 5-3 (Page 2 of 2). Key Types and Verb Usage

Key Type Usable with Verbs
IKEYXLAT, OKEYXLAT Key_Translate
PIN Class

These keys are used in the various financial-PIN processing commands. They are
double-length keys. In operational form and in external form, these keys are associated
with a control vector.

PINGEN Clear_PIN_Generate,
Clear_PIN_Generate_Alternate,
Encrypted_PIN_Generate,
Encrypted_PIN_Generate_Alternate,
Encrypted_PIN_Verify

PINVER Encrypted_PIN_Verify

IPINENC Clear_PIN_Generate_Alternate,
Encrypted_PIN_Translate, Encrypted_PIN_Verify

OPINENC Clear_PIN_Encrypt, Encrypted_PIN_Generate,

Encrypted_PIN_Translate

Key-Generating-Key Class

These keys are used to derive keys. They are double-length keys.

KEYGENKY Diversified_Key_Generate,
Encrypted_PIN_Translate,
Encrypted_PIN_Verify

DKYGENKY Diversified_Key_Generate

Cryptographic Variable Class

These keys are used in the special verbs that operate with cryptographic variables and
are single-length keys. In operational form and in external form, these keys are
associated with a control vector.

CVARENC Cryptographic_Variable_Encipher
CVARXCVL Control_Vector_Translate
CVARXCVR Control_Vector_Translate

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

FKey Type—| FKey_Subtype—| |Key Usage

Note: ANY is default

»»—MAC —]
—MACVER
—DATA ANY——
—CIPHER— ANSIX9.9q
—ENCIPHER— CVVKEY—A
—DECIPHER— CVVKEY—BH
—CVARENC— AMEX—CSC- Note: SINGLE
—CVARXCVL— is default
—CVARXCVR
Note: DKYLO Note: DMAC SINGLE—
is default is default KEYLN8—
—DKYGENKY DOUBLE—
DKYLO— —DMAC— KEYLN16—
DKYL1—— —DDATA— MIXED
DKYL2—— —DMV——
DKYL3— —DIMP—
DKYL4—— —DEXP—
DKYL5—— —DPVR—
DKYL6— —DMKEY—
DKYL7 —DMPIN—
—DALL
—SECMSG SMKEY
—DATAC l—SMPIN_|
—DATAM
—DATAMV-
—KEYGENKY CLR8—ENC
—IKEYXLAT—| UKPT
—OKEYXLAT:
—IMPORTER Note 1
OPIM
IMEX—
IMIM——
IMPORT
—EXPORTER Note 1
OPEX
IMEX—
EXEX—
EXPORT Note: ANY
|—XLATE—I— is default
—PINVER
—PINGEN Note 1 —ANY
FNOT—KEK—]
l —DATA——
CPINGEN— —PIN
CPINGENA —LMTD—KEK——
EPINGEN—
EPINVER
—IPINENC Note 1 Note: NO-SPEC
is default
CPINGENA— —NO-SPEC—
EPINVER—] —IBM—PIN—
REFORMAT—| —GBP—PIN T
TRANSLAT —IBM—PINO— NOOFFSET—
—OPINENC Note 1 —GBP—PINO—
—VISA-PVV—
'—INBK—PIN
CPINENC— Note:
EPINGEN— DOUBLE
REFORMAT— is default
TRANSLAT
—DOUBLE—
Note 1: A1l keywords in the Tist below are —KEYLN16— | Note: XPORT-0K
defaults unless one or more keywords -MIXED: is default
in the Tist are specified.
—XPORT-0K
—NO—XPORT
KEY—PART

Figure 5-4. Control_Vector_Generate and Key_Token_Build CV Keyword Combinations

Chapter 5. DES Key-Management 5-9

5-10

CCA Release 2.52

Figure 5-5 (Page 1

of 3). Control Vector Key-Subtype and Key-Usage Keywords

Keyword Meaning

Key-Encrypting Keys

OPIM IMPORTER keys that have a control vector with this attribute can
be used in the Key_Generate verb when the key form is OPIM.

IMEX IMPORTER and EXPORTER keys that have a control vector with
this attribute can be used in the Key_Generate verb when the key
form is IMEX.

IMIM IMPORTER keys that have a control vector with this attribute can
be used in the Key_Generate verb when the key form is IMIM.

IMPORT IMPORTER keys that have a control vector with this attribute can
be used to import a key in the Key_Import verb.

OPEX EXPORTER keys that have a control vector with this attribute can
be used in the Key_Generate verb when the key form is OPEX.

EXEX EXPORTER keys that have a control vector with this attribute can
be used in the Key_Generate verb when the key form is EXEX.

EXPORT EXPORTER keys that have a control vector with this attribute can
be used to export a key in the Key_Export verb.

XLATE IMPORTER and EXPORTER keys that have a control vector with
this attribute can be used in the Key_Translate verb.

ANY Key-encrypting keys that have a control vector with this attribute
can be used to transport any type of key.

NOT-KEK Key-encrypting keys that have a control vector with this attribute
cannot be used to transport key-encrypting keys.

DATA Key-encrypting keys that have a control vector with this attribute
can be used to transport keys with a key type of DATA, CIPHER,
ENCIPHER, DECIPHER, MAC, and MACVER.

PIN Key-encrypting keys that have a control vector with this attribute
can be used to transport keys with a key type of PINVER,
IPINENC, and OPINENC.
Note: The PINGEN key cannot be transported by this type of
KEK.

LMTD-KEK Key-encrypting keys that have a control vector with this attribute
can be used to exchange keys with key-encrypting keys that carry
NOT-KEK, PIN, or DATA key-type ciphering restrictions.

Data Operation Keys

SMKEY Enable the encryption of keys in an EMV secure message.

SMPIN Enable the encryption of PINs in an EMV secure message

PIN Keys

NO-SPEC The control vector does not require a specific PIN-calculation
method.

IBM-PIN Select the IBM 3624 PIN-calculation method.

IBM-PINO Select the IBM 3624 PIN-calculation method with offset
processing.

GBP-PIN Select the IBM German Bank Pool PIN-calculation method.

GBP-PINO Select the IBM German Bank Pool PIN-calculation method with
institution-PIN input or output.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Figure 5-5 (Page 2

of 3). Control Vector Key-Subtype and Key-Usage Keywords

Keyword Meaning

VISA-PVV Select the VISA-PVV PIN-calculation method.

INBK-PIN Select the Interbank PIN-calculation method.

NOOFFSET Indicates that a PINGEN or PINVER key cannot participate in the
generation or verification of a PIN when an offset or the VISA-PVV
process is requested.

CPINGEN The key can participate in the Clear_PIN_Generate verb.

CPINGENA The key can participate in the Clear_PIN_Generate_Alternate verb.

EPINGEN The key can participate in the Encrypted_PIN_Generate verb.

EPINVER The key can participate in the Encrypted_PIN_Verify verb.

CPINENC The key can participate in the Clear_PIN_Encrypt verb.

REFORMAT The key can participate in the Encrypted_PIN_Translate verb in
the Reformat mode.

TRANSLAT The key can participate in the Encrypted_PIN_Translate verb in

the Translate mode.

Key-Generating Keys

CLR8-ENC The key can be used to multiply-encrypt eight bytes of clear data
with a generating key.

DALL The key can be used to generate keys with the following key
types: DATA, DATAC, DATAM, DATAMV, DMKEY, DMPIN,
EXPORTER, IKEYXLAT, IMPORTER, MAC, MACVER,
OKEYXLAT, and PINVER

DDATA The key can be used to generate a single-length or double-length
DATA or DATAC key.

DEXP The key can be used to generate an EXPORTER or an
OKEYXLAT key.

DIMP The key can be used to generate an IMPORTER or an IKEYXLAT
key.

DMAC The key can be used to generate a MAC or DATAM key.

DMKEY The key can be used to generate a SECMSG with SMKEY secure
messaging key for encrypting keys.

DMPIN The key can be used to generate a SECMSG with SMPIN secure
messaging key for encrypting PINSs.

DMV The key can be used to generate a MACVER or DATAMYV key.

DPVR The key can be used to generate a PINVER key.

DKYLO A DKYGENKY key with this subtype can be used to generate a
key based on the key-usage bits.

DKYL1 A DKYGENKY key with this subtype can be used to generate a
DKYGENKY key with a subtype of DKYLO.

DKYL2 A DKYGENKY key with this subtype can be used to generate a
DKYGENKY key with a subtype of DKYLI.

DKYL3 A DKYGENKY key with this subtype can be used to generate a
DKYGENKY key with a subtype of DKYL2.

DKYL4 A DKYGENKY key with this subtype can be used to generate a

DKYGENKY key with a subtype of DKYLS3.

Chapter 5. DES Key-Management 5-11

CCA Release 2.52

Figure 5-5 (Page 3 of 3). Control Vector Key-Subtype and Key-Usage Keywords

Keyword Meaning

DKYL5 A DKYGENKY key with this subtype can be used to generate a
DKYGENKY key with a subtype of DKYLA4.

DKYL6 A DKYGENKY key with this subtype can be used to generate a
DKYGENKY key with a subtype of DKYL5.

DKYL7 A DKYGENKY key with this subtype can be used to generate a
DKYGENKY key with a subtype of DKYLS.

Key Lengths

MIXED Indicates that the key can be either a replicated single-length key
or a double-length key with two different, random eight-byte
values.

SINGLE Specifies the key as a single-length key.

KEYLN8

DOUBLE Specifies the key as a double-length key.

KEYLN16

Miscellaneous Attributes

XPORT-OK Permits the key to be exported by Key_Export or
Data_Key_Export.

NO-XPORT Prohibits the key from being exported by Key_Export or

Data_Key_Export.

KEY-PART Specifies the control vector is for a key part.

Key Tokens, Key Labels, and Key Identifiers

In CCA, a cryptographic key is generally contained within a data structure called a
key token. The key token can contain the key, a control vector, and other
information pertinent to the key. Key tokens can be null, internal, or external.
Internal key-tokens can be stored in key storage and are accessed using a key
label. The CCA API generally permits an application to provide either a key token
or a key label, in which case the parameter description is designated a key
identifier. Key tokens, key labels, and key identifiers are discussed in the following
sections.

Key Tokens

The security API operates with a key token rather than operating simply with a key.
A DES key-token is a 64-byte data structure that can contain the key and other
information frequently needed with the key.

Figure 5-6 on page 5-13 shows the general format of a key token. For more
information, see Appendix B, “Data Structures.”

5-12 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

0 8 16 32 60 63
Key- Flags Control Infor-| Internal Key [Control Vector TVV
Token mation for or

Type Using the Key | External Key

¢ Miscellaneous control information: token type (null, internal, or external),

token version layout, and other information.

¢ The key value (multiply-enciphered under a key formed by either
the master key or a key-encrypting key that is exclusive-ORed with the

control vector).

¢ The control vector for the key provides information about the permitted

uses of the key.

¢ A token-validation value (TVV), which is a checksum that is used to

validate a token.

Figure 5-6. Key_Token Contents

You can use the Key_Token_Build verb to assemble a key token or use the
Key_Token_Parse verb to disassemble a key token. You can also use application
code to assemble or disassemble a key token. You should keep in mind, however,
that the contents and format of key tokens are version and implementation
sensitive. Key-token formats are described in Appendix B, “Data Structures” on

page B-1.

The cryptographic system uses key labels and external, internal, and null

key-tokens, as shown in Figure 5-7.

External Key_Token

0 63
—TX'OZ' | e*KEK.CV(KEY)| ‘
Internal Key Token
0 63
OR —TX'Ol' | exKM. CV (KEY) | ‘
Key Identifier——» Null Key Token
0 63
T
OR —TX'OO' | | ‘
Key_Label
0 63
I
—TName_Token_l .Name_Token_2. -- .Name_Token_n ‘

The first byte is
in the range of
X'20' to X'FE'.

Figure

Key Storage

Key_Labe]—T_

Internal Key_Token

5-7. Use of Key Tokens and Key Labels

Chapter 5. DES Key-Management

5-13

Key Labels

Key Identifiers

CCA Release 2.52

External Key-Token: An external key-token contains an external key that is
multiply-enciphered under a key formed by the exclusive-OR of a key-encrypting
key and the control vector that was assigned when the key token was created or
updated.

An external key-token is specified in a verb call using a key_token parameter. An
external key-token resides in application storage. An application program can
obtain an external key-token by calling one of the following verbs:

e Control_Vector_Translate
e Data_Key_Export

e Key_Export

e Key_Generate

e Key_Token_Build

e Key_Translate.

Internal Key-Token: An internal key-token contains an operational key that is
multiply-enciphered under a key formed by the exclusive-OR of a symmetric
master-key and the control vector that was used when the key token was created
or updated.

An internal key-token is specified in a cryptographic verb call by using a
key_identifier parameter. These verbs produce an internal key-token:

e Clear_Key_Import

e Data_Key_Import

» Diversified_Key_Generate
e Key_Generate

e Key_Import

e Key_Part_Import

» Key_Record_Read

e Key_Token_Build

e Prohibit_Export

e Symmetric_Key_Import.

Null Key-Token: A null key-token is a 64-byte string that begins with the value
X'00'. A null key-token can reside in application storage or in key storage. Some
verbs that create a key token with default values do so when you identify a null
key-token.

A key label serves as an indirect address for a key-token record in key storage.
The security server uses a key label to access key storage to retrieve or to store
the key token. A key_identifier parameter can point to either a key label or a key
token. Key labels are discussed further at “Key-Label Content” on page 7-2.

When a verb parameter is described as some form of a key_identifier, you can
present either a key token or a key label. The key label identifies a key-token
record in key storage.

5-14 |BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Using the Key-Processing and Key-Storage Verbs

Figure 5-8 on page 5-16 shows key-processing and key-storage verbs and how
they relate to key parts, internal and external key-tokens, and key storage. You
can create keys in your application programs by using the
Multiple_Clear_Key_Import, Diversified_Key_Generate, Key_Generate,
Key_Part_Import, Clear_Key_Import, and Random_Number_Generate verbs.

CCA subsystems do not reveal the clear value of enciphered keys, and do provide
significant control over encrypted keys. Simple key-distribution is addressed by the
Cryptographic Node Management (CNM) utility’s capabilities to read and write
encrypted keys from and to key storage and to process key parts with support for
dual control of the key parts. Application programs can use the key processing and
storage verbs to implement a key-distribution system of your design.

The CNM utility, Key_Part_Import, Clear_Key_Import, Multiple_Clear_Key_Import,
and Key_Test verbs allow you to install keys and verify key installation.

Installing and Verifying Keys
To keep a key secret, it can be installed as a series of key parts. Different
individuals can use an application program that loads individual key parts into the
cryptographic facility using the Key_Part_Import verb, or the Cryptographic Node
Management utility to enter a key part from a keyboard or diskette.

The key parts are single or double in length, based on the type of key you are
accumulating. Key-parts are exclusive-ORed as they are accumulated. Thus,
knowledge of a key-part value provides no knowledge about the final key when it is
composed of more than one part. An already-entered key-pari(s) is stored outside
the cryptographic facility enciphered under the symmetric master-key. When all the
key parts are accumulated, the key-part bit is turned off in the key's control vector.

A master-key key-part is loaded into the new master-key register. The key part
replaces the value in the new master-key register, or is exclusive-ORed with the
existing contents of the register. In a separate command, you can copy the
contents of the current master-key register to the old master-key register and write
over the current master-key register with the contents of the new master-key
register.

The commands to load (master) key parts must be individually authorized by
appropriate bits being turned on in the active role for the Load First (Master) Key
Part command or the Load and Combine (Master) Key Part command.

You can use the Key_Test verb to generate a verification pattern. The verification
pattern can then be used to determine the equivalence of another key or a key
part. An application program can use the Key_Test verb to verify the contents of a
key register, an enciphered key, or an enciphered key-part. The CNM utility also
includes services to generate and use key and key-part verification patterns.

Though you do not know the value of the key or the key part, you can test a key
register, key, or key part to ensure it has a correct value. You can provide the
verification information to the individual who loads the key part(s) for the parts that
should already be loaded. If the pattern does not verify, you can instruct the
individual or application not to load an additional key part or not to set the master
key. This procedure can ensure that only valid key-parts are used.

Chapter 5. DES Key-Management 5-15

CCA Release 2.52

Random_Number_Generate Diversified_Key_Generate

I Clear_Key

Key Part_ Import

Import T
I
Symmetric_Key Import —y v — K
Internal Key—Token_L—rKey_Record_Write|——>e S
<+—|Key Record Read+—]y t
RSA-enciphered—key e 0
— r
Key_Record_Create—> a
Symmetric_Key_Export Key Record_Delete—> g
- Key Record List——> e
Key | —
Import
J_ i pA
Symmetric_Key Key_
Generate Generate
T v
Key_
Export
| Y I
Key Translate |Exter‘na1 Key—Token

Y

Figure 5-8. Key-Processing Verbs

In addition to the utilities that are supplied with the hardware, you can use the
Key_Part_Import verb in an application program to load keys from individual key
parts.

Note that loading of key parts into the Coprocessor with the Master_Key_Process
and Key_Part_Import verbs or the CNM utility exposes the key parts to potential
copying by unauthorized processes. If you are concerned by this exposure, you
should randomly generate master keys within the Coprocessor, and/or you should
consider distribution of other keys using public key cryptographic techniques.

Generating Keys

A CCA cryptographic facility can generate? clear keys, key parts, and
multiply-enciphered keys or pairs of keys. These keys are generated as follows:

e To generate a clear key, use the odd-parity mode of the
Random_Number_Generate verb.

e To generate a key part, use the odd-parity mode of the
Random_Number_Generate verb. for the first part, and use the even-parity
mode for subsequent key parts. You can use a key part with the
Key_Part_Import verb.

e A multiply-enciphered key or pair of keys. To generate a random,
multiply-enciphered key, use the Key_Generate verb. The Key_Generate verb
multiply-enciphers a random number using a control vector and either the

2 Keys can also be “diversified” from key-generating keys, see “Diversifying Keys” on page 5-19.

5-16 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

master key or a key-encrypting key. If you are generating a DES asymmetric
key-type, the verb will multiply-encipher the random number a second time with
the “opposite” key-type control-vector. The verb restricts the combination of
control vectors used for the two encipherments and also places restrictions on
the use of master-key versus EXPORTER and IMPORTER
encryption-key-types. This is done to ensure a secure, asymmetric
key-distribution system.

The Key_Generate verb can also do the following:

— Generate one random number for a single-length key or one or two random
numbers for a double-length key

— Update a key token or create a key token that contains the default
control-vector values for the key type. If you update a key token, you can
use your own control vector to add additional restrictions.

Before generating a key, consider how the key will be archived and recovered if
unexpected events occur. Before using the Key_Generate verb, also consider the
following aspects of key processing:

* The use of the key determines the key type and can determine whether you

create a key token with the default control-vector or a key token with your own
updated control-vector that contains non-default restrictions.

If you update a key token, first use the Control_Vector_Generate and
Key_Token_Build verbs to create the control vector and the key token, then
use the Key_Generate verb to generate the key.

Where and when the key will be used determines the form of the key, whether
the verb generates one key or a key-pair, and whether the verb
multiply-enciphers each key for operational, import, or export use. The verb
multiply-enciphers each key under a key that is formed by exclusive-ORing the
control vector in the new or updated key-token with one of the following keys:

— The symmetric master-key. This is the operational (OP) key form.

— An IMPORTER key-encrypting-key. This is the external, importable (IM)
key form.

— An EXPORTER key-encrypting-key. This is the external, exportable (EX)
key form.

If a key will be used locally, it should be enciphered in the OP key form or IM
key form. An IM key form can be saved on external media and imported when
its use is required. Saving a key locally in the IM key form ensures that the key
can be used if the symmetric master-key is changed between the time the key
was generated and the time it is used. This allows you to maintain the
IMPORTER key-encrypting-keys in operational form and to store keys that are
not needed immediately on external media.

If a key will be used remotely (sent to another node), it should be enciphered in
the EX key form under a local EXPORTER key. At the other node, the key will
be imported under the paired IMPORTER key.

Use the SINGLE keyword for a key that should be single length. Use the
SINGLE-R keyword for a double-length key that should perform as a
single-length key; this is often required when such a key will be interchanged
with a non-CCA system. Use the DOUBLE keyword for a double-length key.

Chapter 5. DES Key-Management 5-17

CCA Release 2.52

Since the two halves are random numbers, it is unlikely that the result of the
DOUBLE keyword will produce two halves with the same 64-bit values.

Exporting and Importing Keys, Symmetric Techniques

5-18

To operate on data with the same key at two different nodes, you must transport
the key securely between the nodes. To do this, a transport key or key-encrypting
key must be installed at both nodes. (You can also use an RSA asymmetric key as
a transport key, see “Exporting and Importing Keys, Asymmetric Techniques” on
page 5-19.)

A key that is enciphered under a key-encrypting key other than the symmetric
master-key is called an external key. Deciphering an operational key with the
master key and enciphering the key under a key-encrypting key is called a
key-export operation and changes an operational key to an external key. The
key-export operation is performed in the cryptographic facility so that the clear
value of the key to be exported is not revealed.

Deciphering an external key with a key-encrypting key and enciphering the key
under the local symmetric master-key is called a key-import operation, and changes
an external key to an operational key.

The control vector for the transport key-encrypting-key at the source node must
specify the key as an EXPORTER key. The control vector at the target node must
specify the transport key-encrypting-key as an IMPORTER key. The key to be
transported must be multiply-enciphered under an EXPORTER key-encrypting-key
at the source node and multiply-deciphered under an IMPORTER
key-encrypting-key at the target node. Figure 5-9 on page 5-19 shows both the
key-export and key-import operations. Data operation keys, PIN keys, and
key-encrypting keys can be transported in this manner. The control vector specifies
what kind of keys can be enciphered by a key-encrypting key. For more
information, see Appendix C, “CCA Control-Vector Definitions and Key Encryption”
on page C-1.

Use the Key_Export and the Key_Import verbs to export and import keys with key
types that the control vectors associated with the EXPORTER or IMPORTER keys
permit. Use can the Data_Key_Export verb and the Data_Key_Import verb to
export and import DATA keys; these verbs will not import and export key-encrypting
keys and PIN keys.

The key-encipherment processes are described in detail at “CCA Key Encryption
and Decryption Processes” on page C-12 .

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Operational Key to Be Imported Operational

Form of Key Exported Key Form of Key

at Node A at Node B
Key_Export — Key_Import

Multiply- Multiply-

Symmetric Master Key—»Decipher Encipher «—Symmetric Master Key
Exporter Multiply- Multiply-| Importer
Key-Encrypting Key —»Encipher Decipher «—Key-Encrypting Key

External Key

Figure 5-9. Key Exporting and Importing

Exporting and Importing Keys, Asymmetric Techniques

You can also distribute a DES key from one node to another node by “wrapping”
(encrypting) the DES key in the public key of the receiver (IMPORTER). CCA
provides two services for wrapping the DES key in the public key of the recipient:

e PKA_Symmetric_Key_Export
e PKA_Symmetric_Key_Generate

and you use the PKA_Symmetric_Key_Import verb to unwrap the transported key
using the recipient's matching private key.

Several techniques for formatting the key to be distributed are in common use and
are supported by the verbs. The verbs support processing of default DATA keys.
PKA_Symmetric_Key_Generate and PKA_Symmetric_Key_lmport can also be used
to exchange a DES key-encrypting-key.

DATA keys can be exchanged with CCA and non-CCA implementations using two
methods defined in the RSA PKCS #1 v2.0 standard:

* RSAES-OAEP
* RSAES-PKCS-v1_5.

Key-encrypting keys can be exchanged between CCA implementations using the
“PKA92” formatting method. PKA92 is an OAEP formatting method.

The formatting methods are discussed in “Formatting Hashes and Keys in
Public-Key Cryptography” on page D-19.

Diversifying Keys
CCA supports several methods for diversifying a key using the
Diversified_Key_Generate verb. Key-diversification is a technique often used in
working with smart cards. In order to secure interactions with a population of
cards, a “key-generating key” is used with some data unique to a card to derive
(“diversify”) a key(s) for use with that card. The data is often the card serial
number or other quantity stored on the card. The data is often public, and

Chapter 5. DES Key-Management 5-19

CCA Release 2.52

therefore it is very important to handle the key-generating key with a high degree of
security lest the interactions with the whole population of cards be placed in
jeopardy.

In the current implementation, several methods of diversifying a key are supported:
CLRS8-ENC, TDES-ENC, TDES-DEC, SESS-XOR, TDES-XOR, and TDESEMV2
and TDESEMV4. The first two methods triple-encrypt data using the
generating_key to form the diversified key. The diversified key is then
multiply-enciphered by the master key modified by the control vector for the output
key. The TDES-DEC method is similar except that the data is triple-decrypted.

The SESS-XOR method provides a means for modifying an existing DATA,
DATAC, MAC, DATAM, or MACVER, DATAMYV single- or double-length key. The
provided data is exclusive-ORed into the clear value of the key. This form of key
diversification is specified by several of the credit card associations.

The TDES-ENC and TDES-DEC methods permit the production of either another
key-generating key, or a “final” key. Control-vector bits 19-22 associated with the
key-generating key specify the permissible type of final key. (See DKYGENKY on
page C-6.) Control-vector bits 12-14 associated with the key-generating key
specify if the diversified key is a final key or another in a series of key-generating
keys. Bits 12 to 14 specify a counter that is decreased by one each time the
Diversified_Key_Generate verb is used to produce another key-generating key. For
example, if the key-generating key that you specify has this counter set to B'010",
then you must specify the control vector for the generated_key with a DKYGENKY
key type having the counter bits set to B'001' and specifying the same final key
type in bits 19-22. Use of a generating_key with bits 12-14 set to B'000' results in
the creation of the final key. Thus you can control both the number of
diversifications required to reach a final key, and you can closely control the type of
the final key.

The TDESEMV2, TDESEMV4, and TDES-XOR methods also derive a key by
encrypting supplied data including a transaction counter value received from an
EMV smart card. The processes are described in detail at“VISA and EMV-Related
Smart Card Formats and Processes” on page E-17 . Refer to “Working With EMV
Smart Cards” on page 8-13 to understand the various verbs you can use to
operate with EMV smart cards.

Storing Keys in Key Storage

5-20

Only internal key-tokens can be stored in key storage. The verbs that you use to
create, write, read, delete, and list records in key storage, and the format of the key
label used to access these records, are described in Chapter 7, “Key-Storage
Verbs.”

Note: To use key storage, the Compute_Verification_Pattern command must first
be authorized. This command is used to validate that the symmetric master-key
used to encipher keys within the key-storage file had the same value as the
symmetric master-key in the cryptographic facility when the key-storage file is
opened.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Security Precautions

Be sure to see the “Observations on Secure Operations” chapter in the CCA
Support Program Installation Manual.

In order to maintain a secure cryptographic environment, each cryptographic node
must be audited on a regular basis. This audit should be aimed at preventing
inadvertent and malicious breaches of security. Some of the things that should be
audited are listed below:

e The same transport key should not be used as both an EXPORTER key and

IMPORTER key on any given cryptographic node. This would destroy the
asymmetrical properties of the transport key.

Enablement of the Encipher Under Master Key command (command offset
X'00C3X") should be avoided.

The Key_Part_Import verb can be used to enter key-encryption keys and data
keys into the system. This verb provides for split knowledge (dual control) of
keys by ensuring that no one person knows the true value of a key. Each
person enters part of a key and the actual key is not assembled until the last
key part is used. Neither the key nor the partial results of the key assembly
appear in the clear outside of the secure hardware. Note, however, that the
clear key-parts have passed through the general purpose computer. Consider
accumulating the parts on different machines or using public-key cryptography
in the key-distribution scheme.

Be careful that the public key used in the PKA_Symmetric_Key_Generate and
PKA_Symmetric_Key_Export verbs is associated with a legitimate receiver of
the exported keys.

Chapter 5. DES Key-Management 5-21

Clear_Key_Import CCA Release 2.52

Clear_Key_Import (CSNBCKI)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Clear_Key_Import verb enciphers a clear, single-length DES key under a
symmetric master-key. The resulting key is a DATA key because the service
requires that the resulting internal key-token have a DATA control-vector. You can
use this verb to create an internal key-token from a null key-token, or you can
update an existing internal DATA key-token with the enciphered value of the clear
key. (You can create other types of DES keys from clear-key information using the
Key_Part_Import verb.)

If the clear-key value does not have odd parity in the low-order bit of each byte, the
reason_code parameter presents a warning.

Also see the Multiple_Clear_Key_Import verb on page 5-71.

Restrictions
None
Format
CSNBCKI
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
clear_key Input String 8 bytes
target_key_identifier In/Output String 64 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

clear_key
The clear_key parameter is a pointer to a string variable containing the clear
value of the DES key being imported as a DATA key. The key is to be
enciphered under the symmetric master-key. Although not required, the
low-order bit in each byte should provide odd parity for the other bits in the
byte.

target_key_identifier
The target_key _identifier parameter is a pointer to a string variable. If the key
token in application storage or key storage is null, then a DATA key-token
containing the encrypted clear-key replaces the null token. Otherwise, the
preexisting token must be a DATA key-token and the encrypted clear-key
replaces the existing key-value.

5-22 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Clear_Key_Import

Required Commands

The Clear_Key_Import verb requires the Encipher Under Master Key command
(command offset X'00C3') to be enabled in the active role.

Chapter 5. DES Key-Management 5-23

Control_Vector_Generate CCA Release 2.52

Control_Vector_Generate (CSNBCVG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Control_Vector_Generate verb builds a control vector from keywords specified
by the key_type and rule_array parameters. For descriptions of the keywords and
for valid combinations of these keywords, see Figure 5-4 on page 5-9, “Key Types”
on page 5-5, and “Key-Usage Restrictions” on page 5-6. You may achieve added

security by using optional keywords, or in some cases required keywords, supplied
in the rule-array variable.

Restrictions
None
Format
CSNBCVG
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
key_type Input String 8 bytes
rule_array_count Input Integer
rule_array Input String rule_array_count * 8 bytes
array
reserved Input String null pointer or XL8'00"
variable
control_vector Output String 16 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_type
The key_type parameter is a pointer to a string variable containing a keyword
for the key type. The keyword is eight bytes in length, left-justified and padded
on the right with space characters. Supply a keyword from the following list:

CIPHER DATAC EXPORTER OKEYXLAT
CVARDEC DATAM IKEYXLAT OPINENC
CVARENC DATAMV IMPORTER PINGEN
CVARPINE DECIPHER IPINENC PINVER
CVARXCVL DKYGENKY MAC KEYGENKY?
CVARXCVR ENCIPHER MACVER SECMSG*
DATA

For definitions of these keywords, see “Control Vectors” on page 5-4.

3 CLR8-ENC must be coded in the rule array when the KEYGENKY key-type is coded.
4 SMKEY or SMPIN must be coded in the rule array when the SECMSG key-type is coded.

5-24 BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

rule_array_count

Control_Vector_Generate

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable.

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. For the valid combinations of
keywords for the key type and the rule array, see Figure 5-4 on page 5-9. The
rule_array keywords are shown below:

ANY DKYL5 GBP-PINO NO-XPORT
CLR8-ENC5 DKYL6 IBM-PIN NOT-KEK
CPINENC DKYL7 IBM-PINO OPEX
CPINGEN DMAC IMEX OPIM
CPINGENA DMKEY IMIM PIN
DALL DMPIN IMPORT REFORMAT
DATA DMV INBK-PIN SINGLE
DDATA DOUBLE KEY-PART | SMKEY®
DEXP DPVR KEYLN8 | SMPIN?
DIMP EPINGEN KEYLN16 TRANSLAT
DKYLO EPINGENA LMTD-KEK UKPT
DKYLA1 EPINVER MIXED VISA-PVV
DKYL2 EXEX NOOFFSET XLATE
DKYL3 EXPORT NO-SPEC XPORT-OK
DKYL4 GBP-PIN

reserved

This reserved parameter is a pointer to a string variable. The parameter must

either be a null pointer, or a pointer to a variable of eight bytes of X'00".

control_vector
The control_vector parameter is a pointer to a string variable containing the
control vector returned by the verb.

Required Commands

This verb has no required hardware commands because control vector generation
does not require cryptographic operations. The verb processes the request in the
security API stub.

5 CLR8-ENC must be coded when the KEYGENKY key-type is coded.
| 6 SMKEY ean be coded when the BKYGENKY key-type is eeded: (Footnote was incorrect.)
|7 SMPIN ean be coded when the BIKYGENKY key-type is eeded- (Footnote was incorrect.)

Chapter 5. DES Key-Management 5-25

Control_Vector_Translate CCA Release 2.52

Control_Vector_Translate (CSNBCVT)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X

Restrictions

Format

Parameters

The Control_Vector_Translate verb changes the control vector used to encipher an
external key. See “Changing Control Vectors with the Control_Vector_Translate
Verb” on page C-20 for additional information about this verb.

None

CSNBCVT

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

KEK_key_identifier Input String 64 bytes

source_key_token Input String 64 bytes

array_key_left Input String 64 bytes

mask_array_left Input String 56 bytes

array_key_right Input String 64 bytes

mask_array_right Input String 56 bytes

rule_array_count Input Integer zero, one, or two

rule_array Input String rule_array_count * 8 bytes
array

target_key_token In/Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

KEK_key_identifier
The KEK_key._identifier parameter is a pointer to a string variable containing an
internal key-token or the key label of an internal key-token record containing
the key-encrypting key. The control vector in the internal key-token must
specify the key type IMPORTER, EXPORTER, IKEYXLAT, or OKEYXLAT.

source_key_token
The source_key_token parameter is a pointer to a string variable containing the
external key-token with the key and control vector to be processed.

array_key_left
The array_key_left parameter is a pointer to a string variable containing an
internal key-token or a key label of an internal key-token record that deciphers
the left mask-array. The internal key-token must contain a control vector
specifying a CVARXCVL key-type.

5-26 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Control_Vector_Translate

mask_array_left
The mask_array_left parameter is a pointer to a string variable containing the
mask array enciphered under the left-array key.

array_key_right
The array_key_right parameter is a pointer to a string variable containing an
internal key-token or the key label of an internal key-token record that
deciphers the right mask-array. The internal key-token must contain a control
vector specifying a CVARXCVR key-type.

mask_array_right
The mask_array_right parameter is a pointer to a string variable containing the
mask array enciphered under the right-array key.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero,
one, or two for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Figure 5-10. Control_Vector_Translate Rule_Array Keywords

Keyword Meaning

Parity adjustment (one, optional)

ADJUST Ensures that all target-key bytes have odd parity. This is the
default.
NOADJUST Prevents the parity of the target key from being altered.

Key portion (one, optional)

LEFT Causes an 8-byte source key, or the left half of a 16-byte
source key, to be processed with the result placed into both
halves of the target key. This is the default.

RIGHT Causes the right half of a 16-byte source key to be processed
with the result placed into only the right half of the target key.
The left half of the target key is unchanged.

BOTH Causes both halves of a 16-byte source key to be processed

with the result placed into corresponding halves of the target

key. When you use the BOTH keyword, the mask array must
be able to validate the translation of both halves.

SINGLE Causes the left half of the source key to be processed with
the result placed into only the left half of the target. The right
half of the target key is unchanged.

Chapter 5. DES Key-Management 5-27

Control_Vector_Translate CCA Release 2.52

target_key_token
The target_key_token parameter is a pointer to a string variable containing an
external key-token with the new control-vector. This key token contains the key
halves with the new control-vector.

Required Commands

The Control_Vector_Translate verb requires the Translate Control Vector command
(offset X'00D6') to be enabled in the active role.

5-28 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Cryptographic_Variable_Encipher

Cryptographic_Variable_Encipher (CSNBCVE)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

The Cryptographic_Variable_Encipher verb uses a CVARENC key to encrypt
plaintext to produce ciphertext using the Cipher Block Chaining (CBC) method.
The plaintext must be a multiple of eight bytes in length.

Specify the following to encrypt plaintext:

An internal key-token or a key label of an internal key-token record that
contains the key to be used to encrypt the plaintext with the
c-variable_encrypting_key._identifier parameter. The control vector in the key
token must specify the CVARENC key-type.

The length of the plaintext, which is the same as the length of the returned
ciphertext, with the text_length parameter. The plaintext must be a multiple of
eight bytes in length.

The plaintext with the plaintext parameter.
The initialization vector with the initialization_vector parameter.

A field for the returned ciphertext with the ciphertext parameter. The length of
this field is the length that you specified with the text_length parameter.

The verb does the following:

Uses the CVARENC key and the initialization value with the CBC method to
encrypt the plaintext.

Returns the encrypted plaintext in the variable pointed to by the ciphertext
parameter.

The text length must be a multiple of eight bytes.

The minimum length of text that the security server can process is 8 bytes and
the maximum is 256 bytes.

CSNBCVE

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes
c-variable_encrypting_key_identifier Input String 64 bytes

text_length Input Integer

plaintext Input String text_length bytes
initialization_vector Input String 8 bytes

ciphertext Output String text_length bytes

Chapter 5. DES Key-Management 5-29

Cryptographic_Variable_Encipher CCA Release 2.52

Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

c-variable_encrypting_key_identifier
The c-variable_encrypting_key._identifier parameter is a pointer to a string
variable containing an internal key-token or a key label of an internal key-token
record in key storage. The internal key-token must contain a control vector that
specifies a CVARENC key-type.

text_length
The text_length parameter is a pointer to an integer variable containing the
length of the plaintext variable and the ciphertext variable.

plaintext
The plaintext parameter is a pointer to is a string variable containing the
plaintext to be encrypted.

initialization_vector
The initialization_vector parameter is a pointer to a string variable containing
the eight-byte initialization vector the verb uses in encrypting the plaintext.

ciphertext
The ciphertext parameter is a pointer to a string variable containing the
ciphertext returned by the verb.

Required Commands

The Cryptographic_Variable_Encipher verb requires the Encipher Cryptovariable
command (offset X'00DA"') to be enabled in the active role.

5-30 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Data_Key_Export

Data_Key_Export (CSNBDKX)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Data_Key_Export verb exports a single-length or double-length internal
DATA-key. The verb can export the key from an internal key-token in key storage
or application storage. This verb, which is authorized with a different control point
than used with the Key_Export verb, allows you to limit the export operations to
DATA keys as compared to the capabilities of the more general verb.

The verb overwrites the 64-byte target-key-token variable with an external DES
key-token that contains the source key now encrypted by the EXPORTER
key-encrypting-key. Only a DATA key can be exported. If the source key has a
control vector valued to the default DATA control vector, the target key will be
enciphered without any control vector (that is, an “all zero” control vector),
otherwise the source-key control vector will also be used with the target key.

A key with a default, double-length DATA control-vector is exported into a version
X'01' external key-token. Otherwise, keys are exported into version X'00' key
tokens.

Starting with Release 2.41, unless you enable the Unrestrict Data Key Export
command (offset X'0277"'), having replicated key-halves is not permitted to export
a key having unequal key-halves. Note that key parity bits are ignored.

CSNBDKX

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes
source_key._identifier Input String 64 bytes
exporter_key_identifier Input String 64 bytes
target_key_token Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

source_key_identifier
The source_key_identifier parameter is a pointer to a string variable containing
the internal key-token or the key label of the internal key-token to be exported.
Only a DATA key can be exported.

exporter_key_identifier
The exporter_key_identifier parameter is a pointer to a string variable
containing the (EXPORTER) transport key-token or the key label of the
(EXPORTER) transport key-token used to encipher the target key.

Chapter 5. DES Key-Management 5-31

Data_Key_Export CCA Release 2.52

target_key_token
The target_key_token parameter is a pointer to a string variable containing the
reencrypted source-key token. Any existing information in this variable will be
overwritten.

Required Commands

The Data_Key_Export verb requires the Data Key Export command (command
offset X'010A") to be enabled in the active role.

By also specifying the Unrestrict Data Key Export command (offset X'0277'), you
can permit a less secure mode of operation that enables an equal key-halves
EXPORTER key-encrypting-key to export a key having unequal key-halves (key
parity bits are ignored).

5-32 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Data_Key_Import

Data_Key_Import (CSNBDKM)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Data_Key_Import verb imports an encrypted, source DES single-length or
double-length DATA key and creates or updates a target internal key-token with the
master-key-enciphered source key. The verb can import the key into an internal
key-token in application storage or in key storage. This verb, which is authorized
with a different control point than used with the Key_Import verb, allows you to limit
the import operations to DATA keys as compared to the capabilities of the more
general verb.

Specify the following:

source_key_token: An external key-token containing the source key to be imported.
The external key-token must indicate that a control vector is present. However,
the control vector is usually valued at zero. A double-length key that should
result in a default DATA control vector must be specified in a version X'01'
external key-token. Otherwise, both single-length and double-length keys are
presented in a version X'00' key token.

Alternatively, you can provide the encrypted DATA-key at offset 16 in an
otherwise all X'00' key-token. The verb will process this token format as a
DATA key encrypted by the IMPORTER key and a null (all zero) control vector.

importer_key_identifier: An IMPORTER key-encrypting-key under which the source
key is deciphered.

target_key_identifier: An internal or null key-token. The internal key-token can be
located in application storage or in key storage.

The verb builds the internal key-token as follows:

e Creates a default control-vector for a DATA key-type in the internal key-token,
provided the control vector in the external key-token is zero. If the control
vector is not zero, the verb copies the control vector from the external
key-token into the internal key-token.

e Multiply-deciphers the key under the keys formed by the exclusive-OR of the
key-encrypting key (identified in the importer_key_identifier) and the control
vector in the external key-token, then multiply-enciphers the key under keys
formed by the exclusive-OR of the symmetric master-key and the control vector
in the internal key-token. The verb places the key in the internal key-token.

e Calculates a token-validation value and stores it in the internal key-token.

This verb does not adjust the parity of the source key.

Chapter 5. DES Key-Management 5-33

Data_Key_Import

Restrictions

Format

Parameters

CCA Release 2.52

Starting with Release 2.41, unless you enable the Unrestrict Data Key Import
command (offset X'027C"'), an IMPORTER transport key having replicated
key-halves is not permitted to import a key having unequal key-halves. (Note that
key parity bits are ignored.)

CSNBDKM

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes
source_key_token Input String 64 bytes
importer_key._identifier Input String 64 bytes
target_key_identifier In/Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

source_key_token
The source_key_token parameter is a pointer to a string variable containing the
external key-token to be imported. Only a DATA key can be imported.

importer_key_identifier
The importer_key_identifier parameter is a pointer to a string variable
containing the (IMPORTER) transport key or the key label of the (IMPORTER)
transport key used to decipher the source key.

target_key_identifier
The target_key_identifier parameter is a pointer to a string variable containing a
null key-token, an internal key-token, or the key label of an internal key-token
or null key-token record in key storage. The key token receives the imported
key.

Required Commands

The Data_Key_Import verb requires the Data Key Import command (offset
X'0109') to be enabled in the active role.

By also specifying the Unrestrict Data Key Import command (offset X'027C"'), you
can permit a less secure mode of operation that enables an equal key-halves
IMPORTER key-encrypting-key to import a key having unequal key-halves (key
parity bits are ignored).

5-34 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Diversified_Key_Generate

Diversified_Key_Generate (CSNBDKG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Diversified_Key_Generate verb generates a key based on a function of a
key-generating key, the process rule, and data that you supply. The
key-generating-key key-type enables you to restrict such keys from being used in
other verbs that might reveal the value of a diversified key.

This verb is especially useful for creating “diversified keys” for operating with
finance industry smart cards. Be sure to review “Diversifying Keys” on page 5-19.

To use the verb, specify the following:

A rule-array keyword to select the diversification process.

The operational key-generating key from which the diversified keys are
generated. The control vector of the key-generating key determines the type of
target key that is generated and, except for the SESS-XOR process, restricts
the use of this key to the key-diversification process.

The data and its length used in the diversification process.

The operational key used to recover the data or, for processes that employ
clear data, a null key-token.

The generated-key key-token with a suitable control vector for receiving the
diversified key. The specified process can restrict the type of generated key.

— For the CLR8-ENC, TDESEMV2, TDESEMV4, and TDES-XOR processes,
a null token may not be specified

— For the TDES-ENC or TDES-DEC processes, a null token may be specified

— For the SESS-XOR process, a null token must be specified.

The verb generates the diversified key and updates the generated-key key-token
with this value by the following procedure:

Determines that it can support the process as requested by the rule-array
keyword

Recovers the key-generating key and checks the control vector for the
appropriate key-type and the specified usage in this verb

Determines that the length of the generating key is appropriate to the specified
process

Determines that the control vector in the generated-key key-token is permissible
for the specified process

Recovers the data-encrypting key and determines that the control vector is
appropriate for the specified process

Decrypts the data as can be required by the specified process
Generates the key appropriate to the specified process

Does not adjust the parity of the derived key.

Chapter 5. DES Key-Management 5-35

Diversified_Key_Generate CCA Release 2.52

Restrictions

Format

Parameters

* Returns the diversified key, multiply-enciphered by the master key modified by
the control vector.

The TDES-XOR rule-array keyword is available starting with Release 2.50. The
TDESEMV2 and TDESEMV4 rule-array keywords are available starting with
Release 2.51.

CSNBDKG

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

generating_key_identifier In/Output String 64 bytes

data_length Input Integer

data Input String data_length bytes

data_decrypting_key_identifier In/Output String 64 bytes

generated_key _identifier In/Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Process rule (required)

CLR8-ENC Specifies that eight bytes of clear (not encrypted) data shall
be triple-DES encrypted with the generating key to create
generated key. The encryption process is like that shown in
Figure C-4 on page C-13 for a single-length key with a
control vector valued to binary zero.

The key selected by the generating_key_identifier must
specify a KEYGENKY key-type also with control vector bit 19
set to one.

The key identified by the data_decrypting_key._identifier must
identify a null key-token.

The key token identified by the generated_key _identifier
variable must contain a control vector that specifies a
single-length key of one of these types: DATA, CIPHER,
ENCIPHER, DECIPHER, MAC, or MACVER.

5-36 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Diversified_Key_Generate

Keyword Meaning

TDES-ENC Specifies that 8 or 16 bytes of clear (not encrypted) data shall
be triple-DES encrypted with the generating key to create the
generated key. If the generated_key._identifier variable
specifies a single-length key, then 8 bytes of clear data is
triple-DES encrypted. If the generated_key_identifier variable
specifies a double-length key, then 16 bytes of clear data is
triple-DES encrypted in ECB mode.

The key selected by the generating_key_identifier must
specify a DKYGENKY key-type that has the appropriate
control vector usage bits (bits 19-22) set for the desired
generated key.

Control vector bits 12-14 binary encode the key-derivation
sequence level (DKYL7 down to DKYLO, see DKYGENKY on
page C-6). The final key is derived when bits 12 to 14 are
B'000'. The verb verifies the incremental relationship
between the value in generated_key_identifier control vector
and the generating_key_identifier control vector. Or in the
case when the generated_key_identifier is a null-token, the
appropriate counter value is placed into the output key-token.

The data_decrypting_key_identifier must identify a null
key-token.

A key token identified by the generated_key_identifier variable
that is not a null key-token must contain a control vector that
specifies a single-length or double-length key having a key
type consistent with the specification in bits 19-22 of the
generating key.

TDES-DEC Specifies that 8 or 16 bytes of clear (not encrypted) data shall
be triple-DES decrypted with the generating key to create the
generated key. If the generated_key._identifier variable
specifies a single-length key, then 8 bytes of clear data is
triple-DES decrypted. If the generated_key_identifier variable
specifies a double-length key, then 16 bytes of clear data is
triple-DES decrypted in ECB mode.

The key selected by the generating _key _identifier must
specify a DKYGENKY key-type that has the appropriate
control vector usage bits (bits 19-22) set for the desired
generated key.

Control vector bits 12-14 binary encode the key-derivation
sequence level (DKYL7 down to DKYLO, see DKYGENKY on
page C-6). The final key is derived when bits 12 to 14 are
B'000'. The verb verifies the incremental relationship
between the value in generated_key_identifier control vector
and the generating_key_identifier control vector. Or in the
case when the generated_key_identifier is a null-token, the
appropriate counter value is placed into the output key-token.

The data_decrypting_key_identifier must identify a null
key-token.

A key token identified by the generated_key _identifier variable
that is not a null key-token must contain a control vector that
specifies a single-length or double-length key having a key
type consistent with the specification in bits 19-22 of the
generating-key.

Chapter 5. DES Key-Management 5-37

Diversified_Key_Generate

5-38

CCA Release 2.52

Keyword

Meaning

TDESEMV2,
TDESEMV4

Note: These options are available starting with Release 2.51.

Specifies that 10, 18, 26, or 34 bytes of clear data shall be
processed to form an EMV card-unique key and then a
session key as specified in the EMV 2000 Integrated Circuit
Card Specification for Payment Systems Version 4.0 (EMV4.0)
Book 2, Annex A1.3. See “VISA and EMV-Related Smart
Card Formats and Processes” on page E-17 for additional
details. The supplied data variable must contain the
concatenation of:

e 8 or 16 bytes of data to diversify the issuer-master-key.

e 2 bytes containing the Application Transaction Counter
(ATC) received from the smart card. Place the counter
value in a string construct with the high-order counter bit
first in the string.

e Optionally, a 16-byte Initial Value used in obtaining the
session key from the card-unique key.

The key selected by the generating_key_identifier parameter
must specify a DKYGENKY key-type at level-0 (bits 12 to 14
B'000') and indicate permission to create one of several key
types in bits 19 to 22:

e B'0001' DDATA, to generate a DATA key

e B'0001' DMAC, to generate a MAC key

e B'0001' DMV, to generate a MACVER key

e B'1000' DMKEY, to generate a SECMSG SMKEY (used
in secure messaging, key encryption, see the
Secure_Messaging_for_Keys verb)

e B'1001' DMPIN, to generate a SECMSG SMPIN (used in
secure messaging, PIN encryption, see the
Secure_Messaging_for_PINs verb).

The data_decrypting_key_identifier must identify a null
key-token.

A key token or key-token record identified by the
generated_key_identifier parameter that is not a null
key-token. The token must contain a control vector that
specifies a key type conforming to that specified in
control-vector bits 19-22 for the key-generating key. The
control vector must specify a double-length key.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Diversified_Key_Generate

Keyword

Meaning

TDES-XOR

Note: This option is available starting with Release 2.50.

Specifies that 10 or 18 bytes of clear (not encrypted) data
shall be processed as described at “VISA and EMV-Related
Smart Card Formats and Processes” on page E-17 to create
the generated key. The data variable contains either 8 or 16
bytes of data to be triple-encrypted to which you append a
2-byte Application Transaction Counter value (previously
received from the smart card). The counter value shall be in
a string construct with the high-order counter bit first in the
string.

The key selected by the generating_key_identifier parameter
must specify a DKYGENKY key-type at level-0 (bits 12 to 14
B'000') and indicate permission to create one of several key
types in bits 19 to 22:

e B'0001' DDATA, to generate a DATA key

e B'0001' DMAC, to generate a MAC key

e B'0001' DMV, to generate a MACVER key

e B'1000' DMKEY, to generate a SECMSG SMKEY (used
in secure messaging, key encryption, see the
Secure_Messaging_for_Keys verb)

e B'1001' DMPIN, to generate a SECMSG SMPIN (used in
secure messaging, PIN encryption, see the
Secure_Messaging_for_PINs verb).

The data_decrypting_key._identifier must identify a null
key-token.

A key token or key-token record identified by the
generated_key_identifier parameter that is not a null
key-token. The token must contain a control vector that
specifies a key type conforming to that specified in
control-vector bits 19-22 for the key-generating key. The
control vector must specify a double-length key.

SESS-XOR

Specifies the VISA method for session-key generation, namely
that 8 or 16 bytes of data shall be exclusive-ORed with the
clear value of the session key contained in the key token
specified by the generating_key_identifier parameter. If the
generating_key._identifier parameter specifies a single-length
key, then 8 bytes of data are exclusive-ORed. If the
generating_key_identifier parameter specifies a double-length
key, then 16 bytes of data are exclusive-ORed.

The key token specified by the generating_key_identifier
parameter must be of key type DATA, DATAC, MAC, DATAM,
MACVER, or DATAMV.

The key identified by the data_decrypting_key_identifier must
identify a null key-token.

On input, the token identified by the generated_key _identifier
parameter must identify a null key-token. The control vector
contained in the output key token identified by the
generated_key_identifier parameter will be the same as the
control vector contained in the key token specified by the
generating_key_identifier parameter.

Chapter 5. DES Key-Management 5-39

Diversified_Key_Generate CCA Release 2.52

generating_key_identifier
The generating_key_identifier parameter is a pointer to a string variable
containing the key-generating-key key-token or key label of a key-token record.

data_length
The data_length parameter is a pointer to an integer variable containing the
number of bytes of data in the data variable.

data
The data parameter is a pointer to a string variable containing the information
used in the key-generation process. This can be clear or encrypted information
based on the process rule specified in the rule array. Currently this variable
must contain clear data.

data_decrypting_key_identifier
The data_decrypting_key_identifier parameter is a pointer to a string variable
containing the data decrypting key-token or key label of a key-token record.
The specified process dictates the class of key. If the process rule does not
support encrypted data, point to a null key-token. Currently this variable must
contain a 64-byte null token.

generated_key_identifier
The generated_key_identifier parameter is a pointer to a string variable
containing the target internal key-token or the key label of the target key-token
record. Specify either an internal token or a skeleton token containing the
desired control vector of the generated key.

e For the CLR8-ENC, TDESEMV2, TDESEMV4, and TDES-XOR processes,
a null token may not be specified

e For the TDES-ENC or TDES-DEC processes, a null token may be specified

e For the SESS-XOR process, a null token must be specified.

The generated key will be encrypted and returned in the specified token. The
control vector in the specified internal token must be suitable for the specified
process rule.

Required Commands

5-40

The Diversified_Key_Generate verb requires the following commands to be enabled
in the active role based on the keyword specified for the process rule:

Process Rule Command Command
Offset

CLR8-ENC X'0040' Generate Diversified Key (CLR8-ENC)
SESS-XOR X'0043' Generate Diversified Key (SESS-XOR)
TDES-DEC X'0042' Generate Diversified Key (TDES-DEC)
TDES-ENC X'0041' Generate Diversified Key (TDES-ENC)
TDES-XOR X'0045' Generate Diversified Key (TDES-XOR)
TDESEMV2, X'0046' Generate Diversified Key (TDESEMVn)
TDESEMV4

When a key-generating key of key type DKYGENKY is specified with control vector
bits (19-22) of B'1111', the Generate Diversified Key (DALL with DKYGENKY key
type) command (offset X'0290') must also be enabled in the active role.

When using the TDES-ENC or TDES-DEC modes, you may specifically enable
generation of a single-length key or a double-length key with equal key-halves (an

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Diversified_Key_Generate

effective single-length key) by enabling the Enable DKG Single Length Keys and
Equal Halves for TDES-ENC, TDES-DEC command (offset X'0044"').

Chapter 5. DES Key-Management 5-41

Key_Export

CCA Release 2.52

Key_Export (CSNBKEX)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

The Key_Export verb exports a source DES internal-key into a target external
key-token. Existing information in the target key-token is overwritten. The target
key is enciphered by the EXPORTER-key exclusive-ORed with the control vector of
the target key.

Specify the following:

Key_type
A keyword for the key type. Use of the TOKEN keyword is the preferred coding
style. For compatibility with older systems, however, you can explicitly name a
key type, in which case the key type must match the key in the control vector of
the source key-identifier.

source_key_identifier
A source-key internal key-token or the key label of an internal key-token record
in key storage containing the source key to be exported.

exporter_key_identifier
An EXPORTER key-encrypting-key under which the target key is enciphered.

target_key_token
A 64-byte field to hold the target key-token.

The verb builds the external key-token:

e Copies the control vector from the internal key-token to the external key-token,
except when the source key has a control vector valued to the default DATA
control-vector for single- or double-length keys, in which case the target control
vector is set to zero.

e Multiply-deciphers the source key under keys formed by the exclusive-OR of
the master key and the control vector in the source key-token,
multiply-enciphers the key under keys formed by the exclusive-OR of the
EXPORTER key-encrypting-key and target-key control vector, and places the
result in the target key-token.

e Calculates a token-validation value and stores it in the target key-token.

e Places the external key-token in the 64-byte field identified by the
target_key token parameter, ignoring any preexisting data.

Starting with Release 2.41, unless you enable the Unrestrict Reencipher From
Master Key command (offset X'0276'), an EXPORTER key-encrypting-key having
equal key-halves is not permitted to export a key having unequal key-halves. Note
that key parity bits are ignored.

5-42 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Format

Parameters

CSNBKEX

Key_Export

return_code
reason_code
exit_data_length
exit_data

key_type
source_key._identifier
exporter_key._identifier
target_key token

Output Integer
Output Integer
In/Output Integer
In/Output String
Input String
Input String
Input String
Output String

exit_data_length bytes
8 bytes

64 bytes

64 bytes

64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_type

The key_type parameter is a pointer to a string variable containing a keyword
that specifies the key type of the source key-token. The keyword is eight bytes
in length, and must be left-justified and padded on the right with space

characters. The key_type keywords are shown below:

CIPHER EXPORTER
DATA IKEYXLAT
DECIPHER IMPORTER
ENCIPHER IPINENC

source_key_identifier

MAC
MACVER
OKEYXLAT
OPINENC

PINGEN
PINVER
TOKEN

The source_key_identifier parameter is a pointer to a string variable containing

the source key-token or key label of a key-token record.

exporter_key_identifier

The exporter_key_identifier parameter is a pointer to a string variable
containing the EXPORTER key-encrypting-key token or key label of a

key-token record.

target_key_token

The target_key_token parameter is a pointer to a string variable containing the

target key-token.

Required Commands

The Key_Export verb requires the Reencipher from Master Key command (offset
X'0013') to be enabled in the active role.

By also specifying the Unrestrict Reencipher From Master Key command (offset
X'0276'), you can permit a less secure mode of operation that enables an equal
key-halves EXPORTER key-encrypting-key to export a key having unequal

key-halves (key parity bits are ignored).

Chapter 5. DES Key-Management 5-43

Key_Generate

CCA Release 2.52

Key_Generate (CSNBKGN)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

The Key_Generate verb generates a random DES key and returns one or two
enciphered copies of the key, ready to use or distribute.

A control vector associated with each copy of the key defines the type of key and
any specific restrictions on the use of the key. Only certain combinations of key
types are permitted when you request two copies of a key. Specify the type of key
through a key type keyword, or by providing a key token or tokens with a control
vector into which the verb can place the keys. If you specify TOKEN as a
key-type, the verb uses the preexisting control-vector from the key token. Use of
the TOKEN keyword allows you to associate other than default control vectors with
the generated keys. Use of the TOKEN keyword is the preferred coding style.

Based on the key_form variable, the verb encrypts a copy or copies of the
generated key under one or two of the following:

e The master key
e An IMPORTER key-encrypting-key
e An EXPORTER key-encrypting-key.

Request two copies of a key when you intend to distribute the key to more than
one node, or when you want a copy for immediate local use and the other copy
available for later local import.

Specify the key length of the generated key. A DES key can be either single or
double length. Certain types of CCA keys must be double length, for example,
EXPORTER and IMPORTER key-encrypting-keys. In certain cases, you need such
a key to perform as a single-length key. In these cases, specify SINGLE-R, “single
replicated.” A double-length key with equal halves performs as though the key were
a single-length key.

Specify where the generated key copies should be returned, either to application
storage or to key storage. In either case, a null key-token can be overwritten by a
default key-token taken from your specification of key-type. If you provide an
existing key-token, the verb replaces the key value in the token.

None

5-44 |BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Format

Parameters

CSNBKGN

Key_Generate

return_code
reason_code

exit_data_length

Output Integer
Output Integer
In/Output Integer

exit_data In/Output String exit_data_length bytes
key_form Input String 4 bytes

key_length Input String 8 bytes

key_type_1 Input String 8 bytes

key _type 2 Input String 8 bytes
KEK_key_identifier_1 Input String 64 bytes
KEK_key_identifier_2 Input String 64 bytes
generated_key_identifier_1 In/Output String 64 bytes
generated_key _identifier_2 In/Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_form

The key_form parameter is a pointer to a string variable containing the keyword
that defines whether one or two copies of the key will be generated, and the
type of key-encrypting key used to encipher the key. The keyword is four
characters in length, and must be left-justified and padded on the right with
space characters.

* When you want a copy of the new key to be immediately useful at the local
node, ask for an operational (OP) key. An OP key is enciphered by the
master key.

e When you want a copy of the new key to be imported to the local node at a
later time, specify an importable (IM) key. An IM key is enciphered by an
IMPORTER key type at the generating node.

e When you want to distribute the generated key to another node or nodes,
specify an exportable (EX) key. An EX key is enciphered by an
EXPORTER key type at the generating node.

Specify one of the following keywords for the key_form variable:

oP

IM

EX
OPOP
OPIM

OPEX

IMIM

IMEX

EXEX

One key for operational use.

One key to be imported later to this node.

One key for distribution to another node.

Two copies of the generated key, normally with different control
vector values.

Two copies of the generated key, normally with different control
vector values; one for use now, one for later importation.

Two copies of the generated key, normally with different control
vector values; one for local use and the other for use at a remote
node.

Two copies of the generated key, normally with different control
vector values; to be imported later to the local node.

Two copies of the generated key, normally with different control
vector values; one to be imported later to the local node and the
other for a remote node.

Two copies of the generated key, sometimes with different control
vector values; to be sent to two different remote nodes. No copy of
the generated key will be available to the local node.

Chapter 5. DES Key-Management 5-45

Key_Generate CCA Release 2.52

key_length
The key_length parameter is a pointer to an eight-byte string variable,
left-justified and padded on the right with space characters, containing the
length of the new key or keys. Depending on key type, you can specify a
single-length key or a double-length key. A double-length key consists of two
eight-byte values. The key_length variable must contain one of the following:

SINGLE or KEYLN8
For a single-length key

SINGLE-R For a double-length key with equal-valued halves (“single
replicated”)

DOUBLE or KEYLN16
For a double-length key8. The key halves will be different
except when the same 56-bit key would be generated twice in
succession — a minuscule possibility.

8 spaces When you provide a control vector, or when you wish the verb
to select the key length based on the key type, provide eight
space characters to direct the verb to select the key length.

key_type_1 and key_type 2
The key_type_1 and key_type_2 parameters are pointers to eight-byte string
variables, each containing a keyword that specifies the key type for each new
key being generated. To specify the key type via the control vector in the
preexisting key-token, use the TOKEN keyword. Alternatively, you can specify
the key type using keywords shown in Figure 5-11 on page 5-48 and
Figure 5-12 on page 5-49. This is useful when you want to create
default-value key-tokens and control-vectors.

e Figure 5-11 on page 5-48 lists the keywords allowed when generating a
single key copy (key_form OP, IM, or EX). Key_type_2 should contain a
string of eight space characters.

e Figure 5-12 on page 5-49 lists the key_type keyword combinations allowed
when requesting two copies of a key value.

KEK_key_identifier_1 and KEK_key_identifier_2
The KEK_key_identifier_1 and KEK_key_identifier_2 parameters are pointers to
64-byte string variables containing the key token or key label of a key-token
record for the key used to encipher the IM-form and EX-form keys. If an
OP-form key is requested, the associated KEK identifier must point to a null
key-token.

generated_key_identifier_1 and generated_key_identifier_2
The generated_key._identifier_1 and generated_key._identifier_2 parameters are
pointers to 64-byte string variables containing the key token or key label of a
key-token record of the generated keys. If the parameter identifies an internal
or external key-token, the verb attempts to use the information in the existing
key-token and simply replaces the key value. Using the TOKEN keyword in the
key_type variables requires that key tokens already exist when the verb is
called, so the control vectors in those key tokens can be used. In general,

8 Certain other CCA implementations may support the keyword DOUBLE-O to enable generation of double-length keys with
key-halves guaranteed to be unique. The associated key-form control vector bits (bits 40-42) B'110' are described at “Key-Form
Bits, ‘fff’ and ‘FFF”” on page C-7. This implementation does not support the DOUBLE-O keyword, but this implementation does
support generation of guaranteed unique-key-halves if you supply a key token with a control vector having form-field bits of
B'110'. Support of form-field B'110' is not available in all CCA implementations.

5-46 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Generate

unless you are using the TOKEN keyword, you must identify a null key-token
on input.

Required Commands

Depending on your specification of key form, key type, and use of the SINGLE-R
key length control, different commands are required to enable operation of the
Key_Generate verb.

 If you specify the key-form and key-type combinations shown with an X in the
Key_Form OP column in Figure 5-11 on page 5-48, the Key_Generate verb
requires the Generate Key command (offset X'008E') to be enabled in the
active role.

* If you specify the key-form and key-type combinations shown with an X in the
Key_Form IM column in Figure 5-11 on page 5-48, the Key_Generate verb
requires the Generate Key Set command (offset X'008C"') to be enabled in the
active role. The verb will apply the restrictive rules of the IMEX column in
Figure 5-12 on page 5-49 to the generation of the IM form key.

 If you specify the key-form and key-type combinations shown with an X in the
Key_Form EX column in Figure 5-11 on page 5-48, the Key_Generate verb
requires the Generate Key Set command (offset X'008C') to be enabled in the
active role. The verb will apply the restrictive rules of the EXEX column in
Figure 5-12 on page 5-49 to the generation of the EX form key.

 If you specify the key-form and key-type combinations shown with an X in
Figure 5-12, the Key_Generate verb requires the Generate Key Set command
(offset X'008C') to be enabled in the active role.

« If you specify the key-form and key-type combinations shown with an E in
Figure 5-12 on page 5-49, the Key_Generate verb requires the Generate Key
Set Extended command (offset X'00D7') to be enabled in the active role.

* If you specify the SINGLE-R key-length keyword, the Key_Generate verb also
requires the Replicate Key command (offset X'00DB') to be enabled in the
active role.

Related Information
The following sections discuss the key_type and key_length parameters.

Key-Type Specifications

Generated keys are returned multiply-enciphered by a key-encrypting key, or by a
master key, exclusive-ORed with the control vector associated with that copy of the
generated key. (See “CCA Key Encryption and Decryption Processes” on

page C-12))

There are two methods for specifying the type of key(s) to be generated:

» Specify a key-type keyword(s) from Figure 5-11 on page 5-48 or Figure 5-12
on page 5-49

e Use the TOKEN keyword and encode the key type and other information in the
control vector you provide in the generated_key_identifier_n key-token
variables.

Use of the key-type keywords generates default control vector values. See

Figure C-2 on page C-3. One or two keywords are examined based on the
key_form variable. Figure 5-11 on page 5-48 shows the key-type keywords you

Chapter 5. DES Key-Management 5-47

Key_Generate

CCA Release 2.52

can use to generate a single key copy with default control-vectors. Figure 5-12 on
page 5-49 shows the key types you can use to generate two copies of a key. An
‘X’ indicates a permissible key type for a given key-form. An E indicates that a
special (Extended) command is required as those keys require special handling.

You can generate a single-length key with any control vector value®. when you
specify SINGLE and OP. In this case, the verb uses the Generate Key command
(X'008E")

If you encode the key type in a control vector supplied in a key token (and use the
TOKEN key-type keyword), remember that non-default control vector values for the
key type can be employed.

Certain key-type keywords have an asterisk (*) indicating that these keywords are
not recognized by the verb as key type specifications. Nevertheless, those key
types are supported when supplied as control vector values.

Figure 5-11. Key_Type and Key_Form Keywords for One Key

Key_Type_1 Key_Form OP Key_Form IM Key_Form EX
MAC X X X
DATA

X X X
PINGEN X X X
DATAC * X X X
DATAM *
DATAMV *
KEYGENKY *
DKYGENKY *
SECMSG *

Note:

1. The key types marked with an * must be requested through the specification of a
proper control vector in a key token and the use of the TOKEN keyword.

2. Additional key types can be generated as operational keys when you supply key
form as OP, key type as TOKEN, key length as eight space characters, and provide
the desired control vector in the key token specified by the

generated_key_identifier_1 parameter.

9 The command-level architecture permits many CV values and value-pairs to be generated so long as they adhere to rules defined
in that architecture. It is beyond the scope of this publication to explain all permissible combinations. Only those with defined
usage are shown in the tables.

5-48 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Generate

Figure 5-12. Key_Type and Key_Form Keywords for a Key Pair

Key_Type_1 Key_Type_2 Key_ Key_ Key_ Key_
Form Form Form Form
OPOP, OPEX EXEX IMEX
OPIM,
IMIM

DATA DATA X X X X

MAC MAC

MAC MACVER

MACVER MAC

DATAC * DATAC *

DATAM * DATAM *

DATAM * DATAMV *

CIPHER CIPHER

CIPHER DECIPHER

CIPHER ENCIPHER

DECIPHER CIPHER

DECIPHER ENCIPHER

ENCIPHER CIPHER

ENCIPHER DECIPHER

KEYGENKY * KEYGENKY *

DKYGENKY * DKYGENKY *

EXPORTER IMPORTER X X X

IMPORTER EXPORTER

EXPORTER IKEYXLAT

IKEYXLAT EXPORTER

IKEYXLAT OKEYXLAT

IMPORTER OKEYXLAT

OKEYXLAT IMPORTER

OKEYXLAT IKEYXLAT

PINGEN PINVER

PINVER PINGEN

OPINENC IPINENC E X X X

IPINENC OPINENC

OPINENC OPINENC X

CVARDEC * CVARENC * E E

CVARENC * CVARDEC *

CVARENC * CVARXCVL *

CVARENC * CVARXCVR *

CVARXCVL * CVARENC *

CVARXCVR * CVARENC *

CVARDEC * CVARPINE *

CVARPINE * CVARDEC *

Note: The key types marked with an * must be requested through the specification of a proper

control-vector in a key token and the use of the TOKEN keyword.

Key-Length Specification

The key_length parameter points to a variable containing a keyword or eight space
characters which specifies the length of a key, either single or double. The
key-length specified must be consistent with the key length indicated by the control
vectors associated with the generated keys. You can specify SINGLE, KEYLNS,
SINGLE-R, KEYLN16, DOUBLE, or eight space characters. The SINGLE-R
keyword (“single replicated”) indicates that you want a double-length key where
both halves of the key are identical. Such a key performs as though the key were
single length.

Figure 5-13 on page 5-50 shows the valid key lengths for each key type. An X’
indicates that a key length is permitted for a key type and a ‘D’ indicates the default

Chapter 5. DES Key-Management 5-49

Key_Generate

CCA Release 2.52

key-length the verb uses when you supply eight space characters with the
key_length parameter.

Figure 5-13. Key Lengths by Key Type

Key Type

SINGLE
KEYLNS8

SINGLE-R

DOUBLE
KEYLN16

MAC
MACVER

X, D
X, D

DATA

X, D

DATAC *
DATAM *
DATAMV *

X X X

XX X | X [X X

EXPORTER
IMPORTER

IKEYXLAT
OKEYXLAT

X X [X X

x x| x x

OO0 |00

CIPHER
DECIPHER
ENCIPHER

X X X
oo

X X X

DKYGENKY
IPINENC
OPINENC
PINGEN
PINVER

X X X X X

X X X X X
lvlvhvlwlw)

CVARDEC *
CVARENC *
CVARPINE *
CVARXCVL *
CVARXCVR *

X X X X X

KEYGENKY *

XXX X X X

X

X, D

SECMSG *

X

X, D

Note: The key types marked with an * must be requested through the specification of a proper

control-vector in a key token and the use of the TOKEN keyword.

5-50 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Import

Key_Import (CSNBKIM)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Key_Import verb imports a source DES key enciphered by the IMPORTER
key-encrypting-key into a target internal key-token. The imported target-key is
returned enciphered using the symmetric master-key.

Specify the following:

Key_type
A keyword for the key type. Use of the TOKEN keyword is the preferred coding
style. For compatibility with older systems, however, you can explicitly name a
key type, in which case the key type must match the key type encoded in the
control vector of the source key-token.

source_key_token
An external key-token or an encrypted external key to be imported. When you
import an enciphered key that is not in an external key-token, the key must be
located at offset 16 (X'10') of a null key-token. (The first byte of a null
key-token is X'00'.)

importer_key _identifier
An IMPORTER key-encrypting-key under which the target key is deciphered.

target_key_identifier
An internal or null key-token, or the key label of an internal or null key-token
record in key storage.

The verb builds or updates the target key-token as follows:

* If the source key is not in an external key-token,

You must specify an explicit key type (not TOKEN).

The default CV for the key type is used when decrypting the source key.
The default CV for the key type is used when encrypting the target key.
The target key-token must either be null or must contain valid,
non-conflicting information.

The key token is returned to the application or key storage with the imported
key.

 If the source key is in an external key-token:

— When an explicit key type keyword other than TOKEN is used, it must be
consistent with the key type encoded in the source-key control vector.

— The control vector in the source key-token is used in decrypting the source
key.

— The control vector in the source key-token is used in encrypting the source
key under the master key. Note that a source key having the default
external DATA control vector (8 or 16 bytes of X'00') will result in a target
key with the default internal DATA control vector.

The key token is returned to the application or key storage with the imported
key.

Chapter 5. DES Key-Management 5-51

Key_Import

Restrictions

Format

Parameters

CCA Release 2.52

Starting with Release 2.41, unless you enable the Unrestrict Reencipher to Master
Key command (offset X'027B'), an IMPORTER key-encrypting-key having equal
key-halves is not permitted to import a key having unequal key-halves. Note that

key parity bits are ignored.

CSNBKIM

return_code
reason_code
exit_data_length
exit_data

key_type
source_key_token
importer_key._identifier
target_key_identifier

Output Integer
Output Integer
In/Output Integer
In/Output String

Input String
Input String
Input String

In/Output String

exit_data_length bytes
8 bytes

64 bytes

64 bytes

64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_type

The key_type parameter is a pointer to a string variable containing an
eight-byte keyword, left-justified and padded on the right with space characters,
specifying the key type of the key to be imported. In general, you should use

the TOKEN keyword.

CIPHER EXPORTER
DATA IKEYXLAT
DECIPHER IMPORTER
ENCIPHER IPINENC

source_key_token

MAC
MACVER
OKEYXLAT
OPINENC

PINGEN
PINVER
TOKEN

The source_key_token parameter is a pointer to a string variable containing the
source DES key-token. Ordinarily the source key-token is an external DES
key-token (the first byte of the key-token data structure contains X'02"').
However, if the first byte of the token is X'00', then the encrypted source-key
is taken from the data at offset 16 (X'10') in the source key-token structure.

importer_key_identifier

The importer_key_identifier parameter is a pointer to a string variable
containing the key-token or key label for the IMPORTER (transport)

key-encrypting-key.
target_key_identifier

The target_key_identifier parameter is a pointer to a string variable containing

the target key-token or key label of a key-token record.

Required Commands

The Key_Import verb requires the Reencipher to Master Key command (offset
X'0012') to be enabled in the active role.

By also enabling the Unrestrict Reencipher To Master Key command (offset
X'027B'), you can permit a less secure mode of operation that enables an equal

5-52 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Import

key-halves IMPORTER key-encrypting-key to import a key having unequal
key-halves (key parity bits are ignored).

Chapter 5. DES Key-Management 5-53

Key_Part_Import CCA Release 2.52

Key_Part_Import (CSNBKPI)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The Key_Part_Import verb is used to accumulate “parts” of a key and store the
result as an encrypted partial key or as the final key. Individual key-parts are
exclusive-ORed together to form the accumulated key.

On each call to Key_Part_Import (except COMPLETE, see below), specify 8 bytes
or 16 bytes of clear key-information based on the length of the key that you are
accumulating. Align an 8-byte clear key in the high-order bytes (leftmost bytes) of
a 16-byte field. Also specify an internal key-token in which the key information is
accumulated. The key token must include a control vector. The control vector
defines the length of the key, 8 or 16 bytes (single length or double length). The
control vector must have the KEY-PART bit set on. The verb returns the
accumulated key information as a master-key-encrypted value in the updated
key-token.

You can use the Key_Token_Build verb to create the internal key-token into which
the first key-part will be imported.

On each call to Key_Part_Import, also specify a rule-array keyword to define the
verb action: FIRST, MIDDLE, LAST, ADD-PART, or COMPLETE.

e With the FIRST keyword, the verb ignores any key information present in the
input key-token. Each byte of the 8- or 16-byte key-part should have the
low-order bit set such that the byte has an odd number of one-bits, otherwise
assuming no other problems, the verb will return reason code 2. Use of the
FIRST keyword requires that the Load First Key Part command be enabled in
the access-control system.

e With the MIDDLE keyword, the verb exclusive-ORs the clear key-part with the
(internally decrypted) key value from the input key-token. Each byte of the 8-
or 16-byte key-part should have the low-order bit set such that the byte has an
even number of one-bits. If any byte in the updated key has an even number
of one bits, and there are no other problems, the verb will return reason
code 2. Use of the MIDDLE keyword requires that the Combine Key Parts
command be enabled in the access-control system. The key-part bit remains
on in the control vector of the updated key token returned from the verb.

e With the LAST keyword, the verb exclusive-ORs the clear key-part with the
(internally decrypted) key value in the input key-token. Each byte of the 8- or
16-byte key-part should have the low-order bit set such that the byte has an
even number of one-bits. If any byte in the updated key has an even number
of one bits, and there are no other problems, the verb will return reason
code 2. This use of the LAST keyword requires that the Combine Key Parts
command be enabled in the access-control system. The key-part bit is set off
in the control vector of the updated key token returned from the verb.

e With the ADD-PART keyword, the verb exclusive-ORs the clear key-part with
the (internally decrypted) key value in the input key-token. Each byte of the 8-
or 16-byte key-part should have the low-order bit set such that the byte has an
even number of one-bits. If any byte in the updated key has an even number

5-54 BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Restrictions

Format

Key_Part_Import

of one bits, and there are no other problems, the verb will return reason
code 2. Use of the ADD-PART keyword requires that the Add Key Part
command be enabled in the access-control system. The key-part bit remains
on in the control vector of the updated key token returned from the verb.

* With the COMPLETE keyword, the key-part bit is set off in the control vector of
the updated key token returned from the verb. Use of the COMPLETE
keyword requires that the Complete Key Part command be enabled in the
access-control system. The 16-byte key_part variable must be declared but will
be ignored by the Coprocessor.

Notes:

1. If your input creates a key value with one or more bytes with an even number
of one bits, that is an out-of-parity key, and the verb returns a reason-code
value of 2. Many verbs check the parity of keys and, if the key does not have
odd parity in each key-byte, may return a warning or may terminate without
performing the requested operation. In general, out-of-parity DATA keys are
tolerated.

2. You can enforce a dual-control, split-knowledge security policy by employing
the FIRST, ADD-PART, and COMPLETE keywords. See “Required
Commands” on page 5-57. New applications should employ the ADD-PART
and COMPLETE keywords in lieu of the MIDDLE and LAST keywords in order
to ensure a separation of responsibilities between someone who can add
key-part information and someone who can declare that appropriate information
has been accumulated in a key. Consider using the Key_Test verb to ensure a
correct key-value has been accumulated prior to using the COMPLETE option
to mark the key as fully operational.

A “replicated key-halves” key (both cleartext halves of a double-length key are
equal) performs like a single-length DES key and is therefore weaker than a
double-length key with unequal halves. Note that key parity bits are ignored.

When the Unrestrict Combine Key Parts command (offset X'027A") is turned off in
the active role, and when the key information decrypted from the key token is a
double-length key and has other than all-zero key bits (parity bits are ignored), the
halves of the key decrypted from the source key-token and the halves of the
updated key are inspected. The updated key is only returned if either the halves of
the source and the updated key are both equal or both unequal. When the equality
of the key-halves of the resulting accumulated key represents a change from the
equality of the source-key halves, the verb terminates with return code 8 and
reason code 2062.

CSNBKPI

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

key_part Input String 16 bytes

key_identifier In/Output String 64 bytes

Chapter 5. DES Key-Management 5-55

Key_Part_Import

Parameters

5-56

CCA Release 2.52

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for

this verb.

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are

shown below:

Figure 5-14. Key_Part_Import Rule_Array Keywords

Keyword

Meaning

Key part (one required)

FIRST

Specifies that an initial key-part is provided. The verb returns
this key-part encrypted by the master key in the key token
which you supplied.

ADD-PART

Specifies that additional key-part information is provided. The
verb exclusive-ORs the key part into the key information held
encrypted in the key token.

COMPLETE

Specifies that the key-part bit shall be turned off in the control
vector of the key rendering the key fully operational. Note that
no key_part information is added to the key with this keyword.

MIDDLE

Specifies that an intermediate key-part, which is neither the
first key-part nor the last key-part, is provided. The verb
exclusive-ORs the key part into the key information held
encrypted in the key token. Note that the command control
point for this keyword is the same as that for the LAST
keyword and different from that for the ADD-PART keyword.

LAST

Specifies that the last key-part is provided. The verb
exclusive-ORs the key part into the key information held
encrypted in the key token. The key-part bit is turned off in
the control vector.

key_part

The key_part parameter is a pointer to a string variable containing a key part to
be entered. The key part may be either 8 or 16 bytes in length. For 8-byte
keys, place the key part in the high-order bytes of the 16-byte key-part field.
The information in this variable must be defined but will be ignored by the
Coprocessor when you use the COMPLETE rule-array keyword.

key_identifier

The key_identifier parameter is a pointer to a string variable containing the
internal DES key-token or a key label for a DES key-token. The key token
must not be null and does supply the control vector for the partial key.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Part_Import

Required Commands

The Key_Part_Import verb requires the following commands to be enabled in the
active role:

e The Load First Key Part command (offset X'001B"') with the FIRST keyword.

e The Combine Key Parts command (offset X'001C") with the MIDDLE and
LAST keywords.

e The Add Key Part command (offset X'0278') with the ADD-PART keyword.
e The Complete Key Part command (offset X'0279') with the COMPLETE
keyword.

The Key_Part_Import verb enforces the key-halves restriction documented above

when the Unrestrict Combine Key Parts command (offset X'027A") is disabled in

the active role. Enabling this command results in less secure operation and is not
recommended.

Chapter 5. DES Key-Management 5-57

Key_Test

CCA Release 2.52

Key_Test (CSNBKYT)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

You use the Key_Test verb to verify the value of a key or key-part. Several
verification algorithms are supported. The verb supports testing of clear keys,
enciphered keys, master keys, and key-parts. The verification pattern and the
verification processes do not reveal the value of an encrypted key, other than
equivalency of two key values.

The verb operates in either a GENERATE or VERIFY mode that you specify with a
rule-array keyword. You also specify the type of key or key-part.

If you test one of the master keys (keywords KEY-KM, KEY-NKM, or KEY-OKM)
you may specify which class of master key to test, either symmetric or asymmetric,
using the SYM-MK and the ASYM-MK rule-array keywords. If you do not select a
master-key class, the verb requires that both selected asymmetric and symmetric
master-keys have the same value. There are three verification methods that apply.
See “Master Key Verification Algorithms” on page D-1.

For historical reasons, the verification information is passed in two 8-byte variables,
random_number and verification_pattern. For simplicity, these variables can be two
8-byte elements of a 16-byte array and processed by your application as a single
quantity. Both parameters must be coded when calling the API.

* When the verb generates a verification pattern, it returns information in the
random number and verification pattern variables.

* When the verb tests a verification pattern, it uses information supplied in the
random number and verification pattern variables. Supply the verification data
and random number from a previous procedure call to the Key_Test verb. The
verb returns the verification results in the form of a return code. If verification
fails, the verb returns a return code of four and reason code of one.

For certain types of keys, you can specify an alternative key-test algorithm using a
rule-array keyword. The algorithms are explained in “Cryptographic Key Verification
Techniques” on page D-1.

e Except for master keys, you can specify the ENC-ZERO algorithm. The
verification information is provided in the four high-order bytes of the verification
pattern variable.

e For master keys, you can specify the MDC-4 algorithm.

Specify the type of key or key-part with a rule-array keyword: master key, clear or
enciphered, and so forth.

5-58 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Restrictions

Format

Parameters

Key_Test

None

CSNBKYT

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer two, three, or four

rule_array Input String rule_array_count * 8 bytes
array

key_identifier Input String 64 bytes

random_number In/Output String 8 bytes

verification_pattern In/Output String 8 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be two,
three, or four for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Process rule (one required)

GENERATE Generates a verification pattern.

VERIFY Verifies a verification pattern.

Key or key-part rule (one required)

KEY-CLR Requests processing for a single-length clear key or key part.

KEY-CLRD Requests processing for a double-length clear key or key part.

KEY-ENC Requests processing for a single-length enciphered key or key
part supplied in a key token.

KEY-ENCD Requests processing for a double-length enciphered key or
key part supplied in a key token.

KEY-KM Identifies the master-key register.

KEY-NKM Identifies the new master-key register.

KEY-OKM Identifies the old master-key register.

Master-key selector (one, optional)

SYM-MK Specifies use of the symmetric master-key registers.

ASYM-MK Specifies use of the asymmetric master-key registers.

Chapter 5. DES Key-Management 5-59

Key_Test

CCA Release 2.52

Keyword Meaning

Verification-process rule (one, optional)

ENC-ZERO Specifies use of the “encrypt zeros” method. Use only with
KEY-CLR, KEY-CLRD, KEY-ENC, or KEY-ENCD keywords.

MDC-4 Specifies use of the MDC-4 master-key-verification method.
Use only with KEY-NKM, KEY-KM, or KEY-OKM keywords.

key_identifier

The key_identifier parameter is a pointer to a string variable containing an
internal key-token, a key label that identifies an internal key-token record in key
storage, or a clear key.

The key token contains the key or the key part used to generate or verify the
verification pattern.

When you specify the KEY-CLR keyword, the clear key or key part must be
stored in bytes 0 to 7 of the key identifier. When you specify the KEY-CLRD
keyword, the clear key or key part must be stored in bytes 0 to 15 of the key
identifier. When you specify the KEY-ENC or the KEY-ENCD keyword, the key
or key part cannot be a clear key.

random_number

The random_number parameter is a pointer to a string variable containing a
number the verb may use in the verification process. When you specify the
GENERATE keyword, the verb returns the random number. When you specify
the VERIFY keyword, you must supply the number. With the ENC-ZERO
method, the random_number variable is not used but must be specified.

verification_pattern

The verification_pattern parameter is a pointer to a string variable containing
the binary verification pattern. When you specify the GENERATE keyword, the
verb returns the verification pattern. When you specify the VERIFY keyword,
you must supply the verification pattern.

With the ENC-ZERO method, the verification data occupies the high-order four
bytes while the low-order four bytes are unspecified (the data is passed
between your application and the cryptographic engine but is otherwise
unused). See “Cryptographic Key Verification Techniques” on page D-1.

Required Commands

The Key_Test verb requires the Compute Verification Pattern command (offset
X'001D") to be enabled in the hardware.

5-60 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Key_Token_Build

Key_Token_Build (CSNBKTB)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

The Key_Token_Build verb assembles an external or internal key-token in
application storage from information you supply.

The verb can include a control vector you supply or can build a control vector
based on the key type and the control vector related keywords in the rule array.
See Figure 5-4 on page 5-9.

The Key_Token_Build verb does not perform cryptographic services on any key
value. You cannot use this verb to change a key or to change the control vector
related to a key.

Note: Version 1 code, and the Transaction Security System, used a smaller
master key verification pattern. With Version 2, the verb interface is changed to
accept an eight-byte verification pattern identified by the
master_key_verification_pattern parameter.

CSNBKTB

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

key_token Output String 64 bytes

key_type Input String 8 bytes

rule_array_count Input Integer

rule_array Input String rule_array_count * 8 bytes

array

key_value Input String 16 bytes

reserved_1* Input void * Integer valued to 0

reserved_2 Input Integer null pointer or 0

reserved_3 Input String null pointer or XL8'00'

control_vector Input String 16 bytes

reserved_4 Input String null pointer or XL8'00'

reserved_5 Input Integer null pointer or 0

reserved_6 Input String null pointer or 8-space
variable

master_key_verification_pattern Input String 8 bytes

" Previous implementations used the reserved_1 parameter to point to a four-byte
integer or string that represented the master key verification pattern. The IBM 4758
Version 2 CCA Support Program requires this parameter to point to a four-byte
value equal to binary zero.

Chapter 5. DES Key-Management 5-61

Key_Token_Build

CCA Release 2.52

Parameters
For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.
key_token
The key_token parameter is a pointer to a string variable containing the
assembled key-token.
Note: This variable cannot contain a key label.
key_type
The key_type parameter is a pointer to a string variable containing a keyword
that defines the key type. The keyword is eight bytes in length, and must be
left-justified and padded on the right with space characters. Valid key_type
keywords are shown below:
CIPHER DATAC IKEYXLAT OKEYXLAT
CVARDEC DATAM IMPORTER OPINENC
CVARENC DATAMV IPINENC PINGEN
CVARPINE DECIPHER KEYGENKY PINVER
CVARXCVL DKYGENKY MAC SECMSG
CVARXCVR ENCIPHER MACVER USE-CV
DATA EXPORTER
For information about key types, see Appendix C, “CCA Control-Vector
Definitions and Key Encryption” on page C-1.
Specify the USE-CV keyword to indicate the key type should be obtained from
the control vector variable.
rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable.
rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:
Figure 5-15 (Page 1 of 2). Key_Token_Build Rule_Array Keywords
Keyword Meaning
Token type (one required)
INTERNAL Specifies an internal key-token.
EXTERNAL Specifies an external key-token.
Key status (one, optional)
KEY Indicates the key token is to contain a key. The key_value
variable contains the key.
NO-KEY Indicates the key token is not to contain a key. This is the
default key status.
5-62 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Token_Build

Figure 5-15 (Page 2 of 2). Key_Token_Build Rule_Array Keywords

Keyword Meaning

Control-vector (CV) status (one, optional)

Note: If you specify the USE-CV keyword in the key_type parameter, use the CV
keyword here.

Ccv Obtain the control vector from the variable identified by the
control_vector parameter.

NO-CV This keyword indicates that a control vector is to be supplied
based on the key type and control-vector-related keywords.
This is the default.

Control-vector keywords (one or more, optional).

See Figure 5-4 on page 5-9 for the key-usage keywords that
can be specified for a given key type.

key_value
The key_value parameter is a pointer to a string variable containing the
encrypted key-value incorporated into the encrypted-key portion of the key
token if you use the KEY rule_array keyword. Single-length keys must be
left-justified in the variable and padded on the right (low-order) with eight bytes
of X'00'.

control_vector
The control_vector parameter is a pointer to a string variable. If you use the

CV rule-array keyword, the variable is copied to the control-vector field of the
key token.

master_key_verification_pattern
The master_key_verification_pattern parameter is a pointer to a string variable.
The value is inserted into the key token when you specify both the KEY and
INTERNAL keywords in the rule array.

Required Commands
The Key_Token_Build verb has no required hardware commands.

Chapter 5. DES Key-Management 5-63

Key_Token_Change CCA Release 2.52

Key_Token_Change (CSNBKTC)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

Use the Key_Token_Change verb to reencipher a DES key from encryption under
the old master-key to encryption under the current master-key and to update the
keys in internal DES key-tokens.

Note: An application system is responsible for keeping all of its keys in a useable
form. When the master key is changed, the IBM 4758 product family
implementations can use an internal key that is enciphered by either the current or
the old master-key. Before the master key is changed a second time, it is
important to have a key reenciphered under the current master-key for continued
use of the key. Use the Key_Token_Change verb to reencipher such a key(s).

Note: Previous implementations of IBM CCA products had additional capabilities
with this verb such as deleting key records and key tokens in key storage. Also,
use of a wild card (*) was supported in those implementations

None

CSNBKTC

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

key_identifier In/Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

5-64 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Token_Change

Figure 5-16. Key_Token_Change Rule_Array Keywords

Keyword Meaning

RTCMK Reenciphers a DES key to the current master-key in an
internal key-token in application storage or in key storage If
the supplied key is already enciphered under the current
master-key the verb returns a positive response (return code,
reason code — 0, 0). If the supplied key is enciphered under
the old master-key, the key will be updated to encipherment
by the current master-key and the verb returns a positive
response (return code, reason code — 0, 0). Other cases
return some form of abnormal response.

Key_ldentifier
The key_identifier parameter is a pointer to a string variable containing the DES
internal key-token or the key label of an internal key-token record in key
storage.

Required Commands

If you specify RTCMK keyword, the Key_Token_Change verb requires the
Reencipher to Current Master Key command (offset X'0090') to be enabled in the
hardware.

Chapter 5. DES Key-Management 5-65

Key_Token_Parse

CCA Release 2.52

Key_Token_Parse (CSNBKTP)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Key_Token_Parse verb disassembles a key token into separate pieces of
information. The verb can disassemble an external key-token or an internal
key-token in application storage.

Use the key_token parameter to specify the key token to disassemble.

The verb returns some of the key-token information in a set of variables identified
by individual parameters and the remaining key-token information as keywords in
the rule array.

Control vector information is returned in keywords found in the rule array when the
verb can fully parse the control vector. Supported keywords are shown in

Figure 5-4 on page 5-9. Otherwise, the verb returns return code 4, reason code
2039.

The Key_Token_Parse verb performs no cryptographic services.

None.

CSNBKTP

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

key_token Input String 64 bytes

key_type Output String 8 bytes

rule_array_count In/Output Integer

rule_array Output String rule_array_count * 8 bytes
array

key_value Output String 16 bytes

MKVP Output Integer (only for a version X'03'

internal-token)

reserved_2 Output Integer

reserved_3 Output String 8 bytes

control_vector Output String 16 bytes

reserved_4 Output String 8 bytes

reserved_5 Output Integer

reserved_6 Output String 8 bytes

master_key_verification_pattern Output String 8 bytes (Only for a version

X'00' internal token)

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_token
The key_token parameter is a pointer to a string variable in application storage
containing an external or internal key-token to be disassembled.

5-66 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Key_Token_Parse

Note: You cannot use a key label for a key-token record in key storage. The
key token must be in application storage.

key_type
The key_type parameter is a pointer to a string variable containing a keyword
defining the key type. The keyword is eight bytes in length, and must be
left-justified and padded on the right with space characters. Valid key_type
keywords are shown below:

CIPHER DATAC EXPORTER MACVER
CVARDEC DATAM IKEYXLAT OKEYXLAT
CVARENC DATAMV KEYGENKY OPINENC
CVARPINE DECIPHER IMPORTER PINGEN
CVARXCVL DKYGENKY IPINENC PINVER
CVARXCVR ENCIPHER MAC SECMSG
DATA

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. This value must be a
minimum of 3 and should be at least 20 for this verb.

On input, specify the maximum number of usable array elements that are
allocated. On output, the verb sets the value to the number of keywords
returned to the application.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords that expresses the contents of the key token. The keywords are
eight bytes in length, and are left-justified and padded on the right with space
characters. The rule_array keywords are shown below:

Figure 5-17. Key_Token_Parse Rule_Array Keywords

Keyword Meaning

Token type (one returned)

INTERNAL Specifies an internal key-token.

EXTERNAL Specifies an external key-token.

Key status (one returned)

KEY Indicates the key token contains a key. The key_value
variable contains the key.

NO-KEY Indicates the key token does not contain a key.

Control-vector (CV) status (one returned)

Ccv The key token specifies that a control vector is present. The
verb sets the control vector variable with the value of the
control vector found in the key token.

NO-CV The key token does not specify the presence of a control
vector. The verb sets the control vector variable with the
value of the control vector field found in the key token.

Control-vector keywords

See Figure 5-4 on page 5-9 for the key-usage keywords that
can result with a given key type.

Chapter 5. DES Key-Management 5-67

Key_Token_Parse

CCA Release 2.52

key_value
The key_value parameter is a pointer to a string variable. If the verb returns
the KEY keyword in the rule array, the key-value variable contains the 16-byte
enciphered key.

MKVP
The MKVP parameter is a pointer to an integer variable. The verb writes zero
into the variable except when parsing a version X'03' internal key-token.

reserved_2/5
The reserved_2 and reserved_5 parameters are either null pointers or pointers
to integer variables. If the parameter is not a null pointer, the verb writes zero
into the reserved variable.

reserved_3/4
The reserved_3 and reserved_4 parameters are either null pointers or pointers
to string variables. If the parameter is not a null pointer, the verb writes eight
bytes of X'00' into the reserved variable.

reserved_6
The reserved_6 parameter is either a null pointer or a pointer to a string
variable. If the parameter is not a null pointer, the verb writes eight space
characters into the reserved variable.

control_vector
The control_vector parameter is a pointer to a string variable in application
storage. If the verb returns the NO-CV keyword in the rule array, the key token
did not contain a control-vector value and the control vector variable will be
filled with 16 space characters.

master_key_verification_pattern
The master_key_verification_pattern parameter is a pointer to a string variable
in application storage. For version 0 key-tokens that contain a key, the
eight-byte master key verification pattern will be copied to the variable.
Otherwise the variable will be filled with eight space characters.

Required Commands

The Key_Token_Parse verb has no required hardware commands because it is not
a cryptographic verb.

5-68 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Key_Translate

Key_Translate (CSNBKTR)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

The Key_Translate verb uses one key-encrypting key to decipher an input key and
then enciphers this key using another key-encrypting key within the secure
environment.

Specify the following key tokens to use this verb:

The external (input) key-token containing the key to be reenciphered.

The internal key-token containing the IMPORTER or IKEYXLAT
key-encrypting-key. (The control vector for the IMPORTER key must have the
XLATE bit set to one.)

The internal key-token containing the EXPORTER or OKEYXLAT
key-encrypting-key. (The control vector for the EXPORTER key must have the
XLATE bit set to one.)

A 64-byte field for the external (output) key-token.

The verb builds the output key-token as follows:

Copies the control vector from the input key-token.
Verifies that the XLATE bit is set to one if an IMPORTER or EXPORTER
key-encrypting-key is used.

Multiply-deciphers the key under a key formed by the exclusive-OR of the
key-encrypting key and the control vector in the input key-token,
multiply-enciphers the key under a key formed by the exclusive-OR of the
key-encrypting key and the control vector in the output key token; then places
the key in the output key-token.

Copies other information from the input key-token.

Calculates a token-validation value and stores it in the output key-token.

None

CSNBKTR

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes
input_key_token In/Output String 64 bytes
input_KEK_key_identifier Input String 64 bytes

output_ KEK_key _identifier Input String 64 bytes
output_key_token Output String 64 bytes

Chapter 5. DES Key-Management 5-69

Key_Translate CCA Release 2.52

Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

input_key_token
The input_key token parameter is a pointer to a string variable containing an
external key-token. The external key-token contains the key to be
reenciphered (translated).

input_KEK_key_identifier
The input_KEK_key_identifier parameter is a pointer to a string variable
containing the internal key-token or the key label of an internal key-token
record in key storage. The internal key-token contains the key-encrypting key
used to decipher the key. The internal key-token must contain a control vector
that specifies an IMPORTER or IKEYXLAT key type. The control vector for an
IMPORTER key must have the XLATE bit set to one.

output_KEK_key_identifier
The output_KEK_key_identifier parameter is a pointer to a string variable
containing the internal key-token or the key label of an internal key-token
record in key storage. The internal key-token contains the key-encrypting key
used to encipher the key. The internal key-token must contain a control vector
that specifies an EXPORTER or OKEYXLAT key type. The control vector for
an EXPORTER key must have the XLATE bit set to one.

output_key_token
The output_key_token parameter is a pointer to a string variable containing an
external key-token. The external key-token contains the reenciphered key.

Required Commands

The Key_Translate verb requires the Translate Key command (offset X'001F"') to
be enabled in the hardware.

5-70 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Multiple_Clear_Key_Import

Multiple_Clear_Key_Import (CSNBCKM)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Multiple_Clear_Key_Import verb multiply-enciphers a clear, single-length or
double-length DES DATA key under a symmetric master-key.

You can use this verb to create an internal key-token from a null key token. In this
case, the control vector will be set to the value of a single-length or double-length
default control-vector. Or, you can update an existing internal DATA key-token with
the enciphered value of the clear key.

You can specify a key label of an existing record in key storage.

If the clear-key value does not have odd parity in the low-order bit of each byte, the
reason_code parameter presents a warning.

None

CSNBCKM

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer zero or one

rule_array Input String rule_array_count * 8 bytes
array

clear_key_length Input Integer 8 or 16

clear_key Input String clear_key_length bytes

key_identifier Output String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero or
one for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Chapter 5. DES Key-Management 5-71

Multiple_Clear_Key_Import CCA Release 2.52

Keyword Meaning

Algorithm (optional)

DES The key should be enciphered under the master key as a
DES key. This is the default.

clear_key_length
The clear_key_length parameter is a pointer to an integer variable containing
the number of bytes of data in the clear_key variable.

clear_key
The clear_key parameter is a pointer to a string variable containing the
single-length (8-byte) or double-length (16-byte) plaintext DES-key to be
imported.

key_identifier
The key_identifier parameter is a pointer to a string variable containing a null
key-token, or an internal key-token, or the key label of an internal key-token
record in key storage. A key token is returned to the application, or to key
storage if the label of a valid key-storage record was specified.

Required Commands

The Multiple_Clear_Key_Import verb requires the Clear Key Multiple command
(offset X'00C3') to be enabled in the hardware.

5-72 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Decrypt

PKA_Decrypt (CSNDPKD)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Decrypt verb decrypts (unwraps) input data using an RSA private-key.
The decrypted data is examined to ensure it meets RSA DSI PKCS #1 block type 2
format specifications. See “PKCS #1 Formats” on page D-19.

Restrictions
1. A key-usage flag bit (see offset 050 in the private-key section) must be on to
permit use of the private key in the decryption of a symmetric key.
2. The RSA private-key modulus size (key size) is limited by the Function Control
Vector to accommodate potential governmental export and import regulations.
The verb enforces this restriction.
Format
CSNDPKD
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer one
rule_array Input String rule_array_count * 8 bytes
array
source_encrypted_key_length Input Integer
source_encrypted_key Input String source_encrypted_key_length
bytes
data_structure_length Input Integer
data_structure In/Output String data_structure_length bytes
private_key_identifier_length Input Integer
private_key_identifier Input String private_key_identifier_length
bytes
clear_target_key_length In/Output Integer
clear_target_key Output String clear_target_key_length
bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Chapter 5. DES Key-Management 5-73

PKA_Decrypt

CCA Release 2.52

Keyword Meaning

Recovery method (required)

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block type
02 documentation. In the RSA PKCS #1 v2.0 standard, RSA
terminology describes this as the RSAES-PKCS1-v1_5 format.

source_encrypted_key_length
The source_encrypted _key length parameter is a pointer to an integer variable
containing the number of bytes of data in the source_encrypted_key variable.
The maximum size allowed is 256 bytes.

source_encrypted_key
The source_encrypted_key parameter is a pointer to a string variable
containing the input key to be decrypted.

data_structure_length
The data_structure_length parameter is a pointer to an integer variable
containing the number of bytes of data in the data_structure variable. This
value must be zero.

data_structure
The data_structure parameter is a pointer to a string variable. This variable is
currently ignored.

private_key_identifier_length
The private_key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the private_key_identifier variable.
The maximum size allowed is 2500 bytes.

private_key_identifier
The private_key_identifier parameter is a pointer to a string variable containing
the RSA private-key token, or the label of an RSA private-key token in key
storage, used to decrypt the source key.

clear_target_key_length
The clear_target_key_length parameter is a pointer to an integer variable
containing the number of bytes of data in the clear_target_key variable. On
input, this variable specifies the maximum permissible length of the result. On
output, this verb updates the variable to indicate the length of the returned key.
The maximum size allowed is 256 bytes.

clear_target_key
The clear_target_key parameter is a pointer to a string variable containing the
decrypted (clear) key returned by this verb.

Required Commands

The PKA_Decrypt verb requires the RSA Decipher Key Data command (offset
X'011F") to be enabled in the hardware.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

PKA_Encrypt

PKA_Encrypt (CSNDPKE)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The PKA_Encrypt verb encrypts (wraps) input data using an RSA public key. The

data that you encrypt may include:

» For keys, the encrypted data can be formatted according to RSA DSI PKCS #1
block type 2 format specifications. See “PKCS #1 Formats” on page D-19.

e Other data, such as a digital signature, can be RSA-ciphered using the public
key and the ZERO-PAD option. The data that you provide will be padded on
the left with zero bits to the modulus length of the public key. When validating
a digital signature using the ZERO-PAD option, you are responsible for
formatting of the hash and any other required information.

The RSA public-key modulus size (key size) is limited by the Function Control
Vector to accommodate governmental export and import regulations.

A message can be encrypted provided that it is smaller than the public key

modulus.

The ZERO-PAD rule-array keyword is only available starting with Release 2.50.

CSNDPKE

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes

array

clear_source_data_length Input Integer

clear_source_data Input String clear_source_data_length
bytes

data_structure_length In/Output Integer

data_structure Input String data_structure_length bytes

public_key_identifier_length Input Integer

public_key_identifier Input String public_key_identifier_length
bytes

target_data_length In/Output Integer

target _data Output String target_data_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for

this verb.

Chapter 5. DES Key-Management 5-75

PKA_Encrypt

5-76

CCA Release 2.52

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Format method (one required)

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block type
02 documentation. In the RSA PKCS #1 v2.0 standard, RSA
terminology describes this as the RSAES-PKCS1-v1_5 format.

ZERO-PAD Places the supplied data in the low-order bit positions of a bit
string of the same length as the modulus. As required,
high-order bits are set to zero. Ciphers the resulting bit-string
with the public key.

clear_source_data_length
The clear_source_data_length parameter is a pointer to an integer variable
containing the number of bytes of data in the clear_source_data variable.
When using the PKCS-1.2 keyword, the maximum size allowed is 245 bytes
with a 2048-bit public key. When using the ZERO-PAD keyword, the maximum
size allowed is 256 bytes with a 2048-bit public key.

clear_source_data
The clear_source_data parameter is a pointer to a string variable containing the
input data to be encrypted.

data_structure_length
The data_structure_length parameter is a pointer to an integer variable
containing the number of bytes of data in the data_structure variable. This
value must be zero.

data_structure
The data_structure parameter is a pointer to a string variable. This variable is
currently ignored.

public_key_identifier_length
The public_key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the public_key_identifier variable.
The maximum size allowed is 2500 bytes.

public_key_identifier
The public_key_identifier parameter is a pointer to a string variable containing
the RSA public-key token, or the label of an RSA public-key token in key
storage, used to encrypt the source data.

target_data_length
The target_data_length parameter is a pointer to an integer variable containing
the number of bytes of data in the target_data variable. On input, this variable
specifies the maximum permissible length of the result. On output, this verb
updates the variable to indicate the length of the returned data. The maximum
size allowed is 256 bytes. The data length will be the same as the size of the
public-key modulus.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Encrypt

target_data
The target_data parameter is a pointer to a string variable containing the
encrypted data returned by the verb. The returned encrypted target-data is the
same length as the public-key modulus.

Required Commands

The PKA_Encrypt verb requires the RSA Public-Key Encipher Clear Key-Data
command (offset X'011E') to be enabled in the hardware.

Chapter 5. DES Key-Management 5-77

PKA_Symmetric_Key_Export CCA Release 2.52

PKA_Symmetric_Key_Export (CSNDSYX)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Symmetric_Key_Export verb enciphers a symmetric DES or CDMF
default DATA-key using an RSA public key.

Specify the symmetric key to be exported, the exporting RSA public-key, and a
rule-array keyword to define the key-formatting method. The DATA control-vector
must have the default value for a single-length or a double-length key as listed in
Figure C-2 on page C-3.

Choose a key-formatting method through a rule array keyword specification. The
formatted key is then enciphered (wrapped) using the supplied public key.
Formatting options:

PKCSOAEP The PKCSOAEP keyword specifies to format a single-length or
double-length DATA key (or CDMF key) according to the method described in
the RSA DSI PKCS#1-v2.0 documentation for RSAES-OAEP. See “PKCS #1
Formats” on page D-19.

PKCS-1.2 The PKCS-1.2 keyword specifies to format a single-length or
double-length DATA key (or CDMF key) according to the method described in
the RSA DSI PKCS #1 documentation for block type 2. In the RSA PKCS #1
v2.0 standard, RSA terminology describes this as the RSAES-PKCS1-v1_5
format. See “PKCS #1 Formats” on page D-19.

ZERO-PAD The ZERO-PAD keyword specifies to format a single-length or
double-length DATA key (or CDMF key) by padding the key value to the left
with bits valued to zero.

Restrictions

The RSA public-key modulus size (key size) is limited by the Function Control

Vector to accommodate potential governmental export and import regulations.

You can only export a default DATA-key with this verb.

Format

CSNDSYX

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes

array

source_key _identifier_length Input Integer

source_key_identifier Input String source_key_identifier_length
bytes

RSA_public_key_token_length Input Integer

RSA_public_key_token Input String RSA_public_key_identifier_length
bytes

RSA_enciphered_key_length In/Output Integer

RSA_enciphered_key Output String RSA_enciphered_key_length
bytes

5-78 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Symmetric_Key_Export

Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Key-formatting method (one required)

PKCSOAEP Specifies that a DES (or CDMF) DATA-key can be exported
using the formatting method found in RSA DSI PKCS#1-v2.0
RSAES-OAEP documentation.

PKCS-1.2 Specifies that a DES (or CDMF) DATA-key can be exported
using the formatting method following the rules defined in the
RSA Laboratories PKCS#1 v2.0 RSAES-PKCS1-v1_5
specification.

ZERO-PAD Specifies that a DES (or CDMF) DATA-key can be exported
with the key value padded on the left with bits valued to zero.

source_key_identifier_length
The source_key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the source_key_identifier variable.
The maximum size allowed is 2500 bytes.

source_key_identifier
The source_key_identifier parameter is a pointer to a string variable containing
either an operational key-token or the key label of an operational key-token to
be exported. The associated control-vector must permit the key to be exported.

RSA_public_key_token_length
The RSA_public_key_token_length parameter is a pointer to an integer variable
containing the number of bytes of data in the RSA_public_key_token variable.
The maximum size allowed is 2500 bytes.

RSA_public_key_token
The RSA_public_key_token parameter is a pointer to a string variable
containing a PKA96 RSA key-token with the RSA public-key of the remote
node that is to import the exported key.

RSA_enciphered_key_length
The RSA_enciphered_key_length parameter is a pointer to an integer variable
containing the number of bytes of data in the RSA_enciphered_key variable.
On output, the variable is updated with the actual length of the
RSA_enciphered_key variable. The maximum size allowed is 2500 bytes.

Chapter 5. DES Key-Management 5-79

PKA_Symmetric_Key_Export CCA Release 2.52

RSA_enciphered_key
The RSA_enciphered_key parameter is a pointer to a string variable containing
the exported RSA-enciphered key returned by the verb.

Required Commands

The PKA_Symmetric_Key_Export verb requires these commands to be enabled in
the hardware for exporting various key types:

¢ Symmetric Key Export PKCS-1.2/OAEP command (offset X'0105"') for DATA
keys using the PKCSOAEP and PKCS-1.2 methods

e Symmetric Key Export ZERO-PAD command (offset X'023E"') for DATA keys
using the ZERO-PAD method.

5-80 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

PKA_Symmetric_Key_Generate

PKA_Symmetric_Key_Generate (CSNDSYG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Symmetric_Key_Generate verb generates a random DES-key and
enciphers the key value. The key value is enciphered under an RSA public-key for
distribution to a remote node (that has the associated private key). The key value
is also multiply-enciphered under either the symmetric master-key or a DES
key-encrypting-key.

Rule-array keywords define how the RSA-enciphered key shall be enciphered, the
length of the generated key, and the type of DES key used to encipher the local
copy of the key.

There are three classes of rule-array keywords:

1. Required keywords to select the formatting method used to expand and secure
the generated key that is encrypted (wrapped) by the public key. Three of the
methods deal with DATA keys and the other two are used with key-encrypting
keys.

2. Optional key-length keywords to control the length of the generated key.

3. When generating DATA keys, optional keywords to select the key used to
encrypt (wrap) the local_enciphered_key.

Key encryption (wrapping) methods:

» DATA keys, either single-length or double-length, can be generated with the
default DATA control-vector as defined in Figure C-2 on page C-3. One copy
of the key, the local_enciphered_key, is returned encrypted by the symmetric
master key or by an IMPORTER or EXPORTER key-encrypting-key. If you do
not specify a null key-token, you must supply either the single-length or
double-length default control vector in a key token.

The public key is used to wrap another copy of the generated key and returned
in the RSA_enciphered_key_token. On input you must specify a null
key-token. You choose how the generated key shall be formatted prior to RSA
encryption using one of these keywords:

PKCSOAEP The key is formatted into an “encrypted message” following the
rules defined in the RSA Laboratories PKCS#1 v2.0 RSAES-OAEP
specification. See “PKCS #1 Formats” on page D-19.

PKCS-1.2 The key is formatted into an “encrypted message” following the
rules defined in the RSA Laboratories PKCS#1 v2.0
RSAES-PKCS1-v1_5 specification. See “PKCS #1 Formats” on
page D-19.

ZERO-PAD The generated key value is extended with zero bits to the left.

Chapter 5. DES Key-Management 5-81

PKA_Symmetric_Key_Generate

Restrictions

CCA Release 2.52

» Key-encrypting keys, either effective single-length or true double-length, are
generated with the details dependent on the keyword you use to control the key
formatting technique.

PKA92

NL-EPP-5

With this keyword, the verb generates a key-encrypting key and
returns two copies of the key. You must specify a pair of
complementary control vectors that conform to the rules for an
OPEX case as defined for the Key_Generate verb. The control
vector for one key copy must be from the EXPORTER class while
the control vector for the other key-copy must be from the
IMPORTER class.

The verb enciphers one key copy using the RSA_public_key and
the key encipherment technique defined in “PKA92 Key Format and
Encryption Process” on page C-14. The control vector for this key
is taken from an internal (operational) DES key token that must be
present on input in the RSA_enciphered_key_token variable.

The control vector for the local key is taken from a DES key token
that must be present on input in the local_enciphered_key._identifier
variable or in the key token identified by the key label in that
variable.

Note: A node-identification (EID) value must have been
established prior to use of the PKA92 keyword. Use the
Cryptographic_Facility_Control verb to set the EID.

With this keyword, the verb generates a key-encrypting key and
returns two copies of the key. The verb enciphers one key copy
using the key encipherment technique defined by certain OEM
equipment. See “Encrypting a Key_Encrypting Key in the
NL-EPP-5 Format” on page C-16. On input, the
RSA_enciphered_key_token variable must contain a DES internal
key token that contains a control vector for an IMPORTER
key-encrypting-key.

The control vector for the local key is taken from a DES key token
that must be present on input in the local_enciphered_key_identifier
variable or in the key token identified by the key label in that
variable.

The permissible key-length of the RSA public key is limited by the value specified in
the function control vector for RSA encipherment of keys.

5-82 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Format

Parameters

PKA_Symmetric_Key_Generate

CSNDSYG

return_code Output
reason_code Output
exit_data_length In/Output
exit_data In/Output
rule_array_count Input
rule_array Input
key_encrypting_key_identifier Input
RSA_public_key _identifier_length Input
RSA_public_key _identifier Input
local_enciphered_key._identifier_length In/Output
local_enciphered_key._identifier In/Output
RSA_enciphered_key_token_length In/Output
RSA_enciphered_key_token In/Output

Integer
Integer
Integer
String
Integer
String
array
String
Integer
String
Integer
String
Integer
String

exit_data_length bytes
one, two, or three
rule_array_count * 8 bytes
64 bytes

RSA_public_key_identifier_length

RSA_enciphered_key_length

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count

The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one,
two, or three for this verb.

rule_array

The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are

shown below:

Keyword

Meaning

Key-formatting method (one required)

key-encrypting keys. See “Encrypting a Key_Encrypting Key
in the NL-EPP-5 Format” on page C-16.

PKCSOAEP Specifies the PKCS#1-V2.0 OAEP method of key
encipherment for DATA keys.

PKCS-1.2 Specifies the PKCS #1, block type 2 method of key
encipherment for DATA keys. In the RSA PKCS #1 v2.0
standard, RSA terminology describes this as the
RSAES-PKCS1-v1_5 format.

ZERO-PAD Specifies the pad-with-zero-bits-to-the-left method of key
encipherment for DATA keys.

PKA92 Specifies the PKA92 method of key encipherment for
key-encrypting keys.

NL-EPP-5 Specifies the NL-EPP-5 process of key encipherment for

Key length (optional use with PKA92 or NL-EPP-5)

SINGLE-R

For key-encrypting keys, specifies that a generated
key-encrypting key is to have equal left and right halves and
thus perform as a single-length key. Otherwise, the two
key-halves will be independent random values.

Chapter 5. DES Key-Management 5-83

PKA_Symmetric_Key_Generate CCA Release 2.52

5-84

Keyword Meaning

Key length (optional use with PKCSOAEP, PKCS-1.2, and ZERO-PAD)

SINGLE Specifies that an exported DATA key should be single length.
KEYLN8 This the default.

DOUBLE Specifies that an exported DATA key should be double length.
KEYLN16

DES encipherment (optional use with PKCSOAEP, PKCS-1.2, and ZERO-PAD)

OoP Enciphers one key copy with the symmetric master-key. This
is the default.

M Enciphers one key copy using the IMPORTER
key-encrypting-key specified with the
key_encrypting_key._identifier parameter.

EX Enciphers one key copy using the EXPORTER
key-encrypting-key specified with the
key_encrypting_key _identifier parameter.

key_encrypting_key_identifier
The key_encrypting_key_identifier parameter is a pointer to a string variable
containing the key token or the key label of a key token in key storage with the
key-encrypting key used to encipher one generated-key copy for DES-based
key distribution.

RSA_public_key_identifier_length
The RSA_public_key_identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
RSA_public_key_identifier variable. The maximum size allowed is 2500 bytes.

RSA_public_key_identifier
The RSA_public_key_identifier parameter is a pointer to a string variable
containing a PKA96 RSA key-token with the RSA public-key of the remote
node that will import the exported key.

local_enciphered_key_identifier_length
The local_enciphered_key_identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
local_enciphered_key_identifier variable. The maximum size allowed is 2500.
However, this value should be 64 as in current CCA practice a DES key-token
or a key label is always a 64-byte structure.

local_enciphered_key_identifier
The local_enciphered_key_identifier parameter is a pointer to a string variable
containing either a key name or a key token. The control vector for the local
key is taken from the identified key token. On output, the generated key is
inserted into the identified key token.

On input, you must specify a token type consistent with your choice of local-key
encryption. If you specify IM or EX, you must specify an external key-token.
Otherwise, specify an internal key-token or a null key-token.

When PKCSOAEP, PKCS-1.2, or ZERO-PAD is specified, a null key-token can
be specified. In this case, a DATA key will be returned. For an internal key
(OP), a default DATA control-vector is returned in the key token. For an
external key (IM or EX), the control vector is set to null.

IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

PKA_Symmetric_Key_Generate

RSA_enciphered_key_token_length

The RSA_enciphered_key_token_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
RSA_enciphered_key_token variable. On output, the variable is updated with
the actual length of the RSA_enciphered_key_token variable. The maximum
size allowed is 2500 bytes.

RSA_enciphered_key_token

The RSA_enciphered_key_token parameter is a pointer to a string variable
containing the generated RSA-enciphered key returned by the verb. If you
specify PKCS-1.2 or ZERO-PAD, on input you should specify a null key token.

If you specify PKA92 or NL-EPP-5, on input specify an internal (operational)
DES key-token.

Required Commands

The PKA_Symmetric_Key_Generate verb requires these command(s) to be
enabled in the hardware depending on the key-formatting method:

Symmetric Key Generate PKCS-1.2/OAEP command (command offset
X'023F"') for DATA keys using the PKCSOAEP and PKCS-1.2 methods

Symmetric Key Generate ZERO-PAD command (command offset X'023C") for
DATA keys using the ZERO-PAD method.

PKA92 Symmetric Key Generate command (command offset X'010D")
NL-EPP-5 Symmetric Key Generate command (command offset X'010E")

Chapter 5. DES Key-Management 5-85

PKA_Symmetric_Key_Import CCA Release 2.52

PKA_Symmetric_Key_Import (CSNDSYI)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

The PKA_Symmetric_Key_Import verb recovers a symmetric DES (or CDMF) key
that is enciphered by an RSA public key. The verb deciphers the RSA-enciphered
symmetric-key to be imported by using an RSA private-key, then multiply-enciphers
the symmetric DES-key using the master key and a control vector.

You specify the operational importing RSA private-key, the RSA-enciphered DES
key to be imported, and a rule-array keyword to define the key-formatting method.

Several methods for recovering keys are available. You select a method through
the use of a rule-array keyword:

For processing single-length or double-length DATA keys, use one of the these
three methods. The control vector in any non-NULL key token identified by the
target_key_identifier parameter must specify the default value for a DATA
control-vector corresponding to the key length found in the decrypted information.
See Figure C-2 on page C-3.

PKCSOAEP The PKCSOAEP keyword specifies that after decrypting the
RSA_enciphered_key variable, the format is checked for conformance with
RSA DSI PKCS#1-v2.0 RSAES-OAEP specifications for a single-length or
double-length key. See “PKCS #1 Formats” on page D-19.

PKCS-1.2 The PKCS-1.2 keyword specifies that after decrypting the
RSA_enciphered_key variable, the format is checked for conformance with
RSA DSI PKCS #1 block type 2 specifications for a single-length or
double-length key. In the RSA PKCS #1 v2.0 standard, RSA terminology
describes this as the RSAES-PKCS1-v1_5 format. See “PKCS #1 Formats” on
page D-19.

ZERO-PAD The ZERO-PAD keyword specifies that after decrypting the
RSA_enciphered_key variable, the format is checked to ensure that all bytes to
the left of either a single-length or a double-length key are zero bits.

For key-encrypting keys:

PKA92 Key-encrypting keys and their control vectors are deciphered using the
method employed in the Transaction Security Systems PKA92 implementation.
See “PKA92 Key Format and Encryption Process” on page C-14.

A node-identification (EID) value must be established prior to use of this verb.
Under the PKA92 scheme, the EID values at the exporting and importing
nodes must be different. Use the Cryptographic_Facility_Control verb to set
the EID.

Note: This implementation will import IPINENC, OPINENC, PINGEN, and
PINVER key types when formatted according to the PKA92 scheme. However,
the implementation does not provide a means for enciphering these key types
in PKA92 format. This extension to CCA is considered non-standard, and may
not be present in other CCA implementations such as the implementation on
IBM eServer zSeries (S/390).

5-86 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Restrictions

Format

Parameters

PKA_Symmetric_Key_Import

1. Private key key-usage controls can prevent use of specific private keys in this
verb. See page 3-7. A key-usage flag bit (see offset 050 in the private-key
section) must be on to permit use of the private key in the decryption of a
symmetric key.

2. The RSA private-key modulus size (key size) is limited by the Function Control
Vector to accommodate potential governmental export and import regulations.

3. Under PKA92, the EID enciphered with a key-encrypting key cannot be the
same as the EID of the importing cryptographic engine.

4. Other IBM implementations of this verb may not support:

* Key types other than a default DATA control-vector
* Use of a key label with the target key identifier.
Check the product-specific literature for restrictions.

CSNDSYI

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

rule_array_count Input Integer one

rule_array Input String rule_array_count * 8 bytes
array

RSA_enciphered_key_length Input Integer

RSA_enciphered_key Input String RSA_enciphered_key_length

RSA_private_key_identifier_length Input Integer

RSA_private_key_identifier Input String RSA_private_key_identifier_length

bytes
target_key_identifier_length In/Output Integer
target_key_identifier In/Output String target_key_identifier_length

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be one for
this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Chapter 5. DES Key-Management 5-87

PKA_Symmetric_Key_Import CCA Release 2.52

Keyword Meaning

RSA key-encipherment method (one required)

PKCSOAEP Specifies the method found in RSA DSI PKCS#1-v2.0
RSAES-OAEP documentation.

PKCS-1.2 Specifies the method found in RSA DSI PKCS#1-v2.0
RSAES-PKCS1-v1_5 specification.

ZERO-PAD Specifies that a DES (or CDMF) DATA-key can be imported
with the key value padded from the left with bits valued to
zero.

PKA92 Specifies the PKA92 method of key encipherment for
key-encrypting keys.

RSA_enciphered_key_length
The RSA_enciphered_key_length parameter is a pointer to an integer
containing the number of bytes of data in the RSA_enciphered_key variable.
The maximum size allowed is 2500 bytes.

RSA_enciphered_key
The RSA_enciphered_key parameter is a pointer to a string variable containing
the key being imported.

RSA_private_key_identifier_length
The RSA_private_key_identifier_length parameter is a pointer to an integer
variable containing the number of bytes of data in the
RSA_private_key_identifier variable. The maximum size allowed is 2500 bytes.

RSA_private_key_identifier
The RSA_private_key_identifier parameter is a pointer to a string variable
containing a key label or a PKA96 key-token with the internal RSA private-key
to be used to decipher the RSA-enciphered key.

target_key_identifier_length
The target_key_identifier_length parameter is a pointer to an integer variable
containing the number of bytes of data in the target_key_identifier variable. On
output, the value is updated with the actual length of the target_key_identifier
variable returned by the verb. The maximum size allowed is 2500 bytes.

target_key_identifier
The target_key_identifier parameter is a pointer to a string variable containing
either a key label, an internal key-token, or a null key-token. Any identified
internal key-token must contain a control vector that conforms to the
requirements of the key that is imported. For example, if the PKCS-1.2
keyword is used in the rule array, the key token must contain a default-value,
DATA control-vector. The imported key is returned in a key token identified
through this parameter.

Required Commands

The PKA_Symmetric_Key_lmport verb requires these commands to be enabled in
the hardware for importing various key types:

e Symmetric Key Import PKCS-1.2/OAEP command (command offset X'0106"')
for for DATA keys using the PKCSOAEP and PKCS-1.2 methods

5-88 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 PKA_Symmetric_Key_Import

¢ Symmetric Key Import ZERO-PAD command (command offset X'023D") for
DATA keys using the ZERO-PAD methods

e PKA92 Symmetric Key Import command (command offset X'0235') when
importing key-generating keys using the PKA92 method

e PKA92 Symmetric Key Import command (command offset X'0236') when
importing PINGEN, PINVER, IPINENC, or OPINENC keys using the PKA92
method.

Chapter 5. DES Key-Management 5-89

Prohibit_Export CCA Release 2.52

Prohibit_Export (CSNBPEX)

Platform/ 0S/2 AIX NT 0S/400
Product
IBM 4758-2/23 X X X X

The Prohibit_Export verb modifies an operational key than can be exported so that
it can no longer be exported.
The verb does the following:

e Multiply-deciphers the key under a key formed by the exclusive-OR of the
master key and the control vector.

e Turns off the export bit in the control vector

e Multiply-enciphers the key under a key formed by the exclusive-OR of the
master key and the control vector. The key and the modified control vector are
stored in the key token.

Restrictions
None
Format
CSNBPEX
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
key_identifier In/Output String 64 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_identifier
The key_identifier parameter is a pointer to a string variable containing the
internal key-token, or the key label of an internal key-token record in key
storage.

Required Commands

The Prohibit_Export verb requires the Lower Export Authority command (offset
X'00CD"') to be enabled in the hardware.

5-90 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Random_Number_Generate

Random_Number_Generate (CSNBRNG)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Random_Number_Generate verb generates a random number for use as an
initialization vector, clear key, or clear key-part.

You specify whether the random number is 64 bits, or 56 bits with the low-order bit
in each of the eight bytes adjusted for even or odd parity. The verb returns the
random number in an eight-byte binary field.

Because the Random_Number_Generate verb uses cryptographic processes, the
quality of the output is better than that which higher-level language compilers
typically supply.

None

CSNBRNG

return_code Output Integer
reason_code Output Integer

exit_data_length In/Output Integer
exit_data In/Output String
form Input String
random_number Output String

exit_data_length bytes
8 bytes
8 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

form
The form parameter is a pointer to a string variable containing a keyword to
select the characteristic of the random number. The keyword is eight bytes in
length, and must be left-justified and padded on the right with space characters.
The keywords are shown below:

Figure 5-18. Key_Token_Build Form Keywords

Keyword Meaning

Generation type (one required)

RANDOM Requests the generation of a 64-bit random number.

obD Requests the generation of a 56-bit, odd parity, random
number.

EVEN Requests the generation of a 56-bit, even parity, random
number.

Chapter 5. DES Key-Management 5-91

Random_Number_Generate CCA Release 2.52

random_number
The random_number parameter is a pointer to a string variable containing the
random number returned by the verb.

Required Commands

The Random_Number_Generate verb requires the Generate Key command (offset
X'008E') to be enabled in the hardware.

5-92 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Chapter 6. Data Confidentiality and Data Integrity

This chapter describes the verbs that use the Data Encryption Standard (DES)
algorithm to encrypt and decrypt data and to generate and verify a message
authentication code (MAC).

Figure 6-1. Data Confidentiality and Data Integrity Verbs
Verb Page | Service Entry Sve
Point Len
Decipher 6-5 Deciphers data CSNBDEC E
Encipher 6-8 Enciphers data CSNBENC E
MAC_Generate 6-11 Generates a message authentication code (MAC) CSNBMGN E
MAC_Verify 6-14 Verifies a MAC. CSNBMVR E
Service location (Svc Len): E=Cryptographic Engine, S=Security API software

Encryption and Message Authentication Codes

This section explains how to use the services described in this chapter to ensure
the confidentiality of data through encryption, and to ensure the integrity of data
through the use of Message Authentication Codes (MAC).

Note: See Chapter 4, “Hashing and Digital Signatures” on page 4-1 for
information about other ways to ensure data integrity.

Ensuring Data Confidentiality

You can use the Encipher verb to convert plaintext to ciphertext, and the Decipher
verb to reverse the process to convert ciphertext back to plaintext. These services
use the DES data encryption algorithm. DES operates on blocks of 64 bits (8
bytes). Based on the length of the DES key that you specify, the Encipher and
Decipher verbs will perform either basic (single) DES or triple-DES'. See
“Single-DES and Triple-DES for General Data” on page D-6.

If you know that your data will always be a multiple of 8 bytes, you can request the
use of the cipher block chaining mode of encryption, designated CBC. In this mode
of encryption, the enciphered result of encrypting one block of plaintext is
exclusive-ORed with the subsequent block of plaintext prior to enciphering the
second block. This process is repeated through the processing of your plaintext.
The process is reversed in decryption. See “Ciphering Methods” on page D-5.

Note that if some portion of the ciphertext is altered, the CBC decryption of that
block and the subsequent block will not recover the original plaintext. Other blocks
of plaintext will be correctly recovered. CBC encryption is used to disguise patterns
in your data that could be seen if each data block was encrypted by itself.

In general, data to be ciphered is not a multiple of eight bytes. In this case, you
need to adopt a strategy for the last block of data. The Encipher and Decipher

1 Note that CCA implementations always encipher DES keys and PIN blocks with “triple-DES.”

© Copyright IBM Corp. 1997, 2004 6-1

CCA Release 2.52

verbs also support the ANSI X9.23 mode of encryption. In X9.23 encryption, at
least one byte of data and up to eight bytes of data are always added to the end of
your plaintext. The last of the added bytes is a binary value equal to the number of
added bytes. The ANSI X9.23 process ensures that the enciphered data is always
a multiple of eight bytes as required for CBC encryption. In X9.23 decryption, the
padding is removed from the decrypted plaintext.

Whenever the first block of plaintext has a predictable value, it is important to
modify the first block of data prior to encryption to deny an adversary a known
plaintext-ciphertext pair. There are two common approaches:

e Use an initialization vector
* Prepend your data with 8 bytes of random data, an initial text sequence.

An initialization vector is exclusive-ORed with the first block of plaintext prior to
encrypting the result. The initialization vector is exclusive-ORed with the decryption
of the first block of ciphertext to correctly recover the original plaintext. You must,
of course, have a means of passing the value of the initialization vector from the
encryption process to the decryption process. A common solution to the problem is
to pass the initialization vector as an encrypted quantity during key agreement
between the encrypting and decrypting processes. You specify the value of an
initialization vector when you invoke the Encipher and the Decipher verbs.

If the procedure for agreeing on a key does not readily result in passing of an
encrypted quantity that can serve as the initialization vector, then you can add eight
bytes of random data to the start of your plaintext. Of course, the decrypting
process must remove this initial text sequence as it recovers your plaintext. An
initialization vector valued to binary zero is used in this case.

The key used to encrypt or decrypt your data is specified in a key token. The
control vector for the key must be of the general class DATA? or CIPHER-class
(control vector bits 8 to 15 equal to X'00' or X'03"', respectively). In addition to
the class of key defined in CV bits 8 to 14, CV bit 18 must also be on to encipher
data while CV bit 19 must also be on to decipher data. See Appendix C, “CCA
Control-Vector Definitions and Key Encryption.” DATA keys can participate in both
enciphering and MACing while CIPHER-class keys only perform in ciphering
operations.

If an invocation of the Encipher or the Decipher verb should include use of the
initialization vector value, use the keyword INITIAL. If there is more data that is a
logical extension of preceding data, you can use the keyword CONTINUE. In this
case, the initialization vector value is not used, but the enciphered value of the last
block of data from a prior ciphering verb is taken from the chaining_vector save
area that you must provide with each use of the ciphering verbs. Each portion of
your data must be a multiple of eight bytes and you must use the CBC encryption
mode. You can use X9.23 keyword with the final invocation of the ciphering verbs
if your processes use this method to accommodate data that can be other than a
multiple of eight bytes.

2 Uppercase letters are used for DATA to distinguish the meaning from a more general sense in which the term data keys means
keys used for ciphering and MACing. In this publication, DATA means keys whose control vector bits 8 to 15 are valued to X'00'.

6-2 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Ensuring Data Integrity

CCA offers three classes of services for ensuring data integrity:

¢ Message authentication code (MAC) techniques based on the DES algorithm
e Hashing techniques
 Digital signature techniques.

This chapter includes the MAC verbs. For information on using hashing or digital
signatures to ensure the integrity of data, see Chapter 4, “Hashing and Digital
Signatures.”

The MAC_Generate and the MAC_Verify verbs support message authentication
code generation and verification consistent with ANSI standard X9.9,

ISO DP 8731, Part I, (ISO/IEC 9797-1, Algorithm 1) and ANSI X9.19 Optional
Procedure 1 (ISO/IEC 9797-1, Algorithm 3). These methods together support both
single-length and double-length keys. If the specified key is double length, the
ANSI X9.19 algorithm will be performed; otherwise, ANSI X9.9 will be performed.
See Appendix C, “CCA Control-Vector Definitions and Key Encryption.”

The verbs also support the message padding technique employed with EMV smart
card messages. The verbs perform EMV-required padding when you supply a
rule-array keyword EMVMAC or EMVMACD consistent with the specified
single-length or double-length key.

Both the DATA-class and the MAC/MACVER key types can be used. Control
vector bit 20 must be on for keys used in the MAC_Generate verb. Control vector
bit 21 must be on for keys used in the MAC_Verify verb.

For additional information about MAC calculation methods, see “MAC Calculation
Methods” on page D-13.

You can employ MAC values with four-byte, six-byte, or eight-byte lengths (32, 48,
or 64 bits) by using the MACLEN4, MACLENG6, or MACLENS8 keywords in the rule
array. MACLEN4 is the default.

When generating or verifying a 32-bit MAC, exchange the MAC in one of these
ways:

e Binary, in four bytes (the default method)

» Eight hexadecimal characters, invoked using the HEX-8 keyword

e Eight hexadecimal characters with a space character between the fourth and
fifth hex characters invoked using the HEX-9 keyword.

For details about MAC services, see the MAC_Generate verb on page 6-11 and the
MAC_Verify verb on page 6-14.

MACing Segmented Data

The MAC services described in this chapter allow you to divide a string of data into
parts, and generate or verify a MAC in a series of calls to the appropriate verb.
This can be useful when it is inconvenient or impossible to bring the entire string
into memory. For example, you might wish to MAC the entire contents of a data
set tens or hundreds of megabytes in length. The length of the data in each
procedure-call is restricted only by the operating environment and the particular
verb. For restrictions to a verb, see the “Restriction” section of the verb
descriptions later in this chapter.

Chapter 6. Data Confidentiality and Data Integrity ~ 6-3

CCA Release 2.52

In each procedure call, a segmenting-control keyword indicates whether the call
contains the first, middle, or last unit of segmented data; the chaining_vector
parameter specifies the work area that the verb uses. (The default
segmenting-control keyword ONLY specifies that segmenting is not used.)

6-4 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Decipher

Decipher (CSNBDEC)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

Format

Parameters

The Decipher verb uses the Data Encryption Standard (DES) or the Commercial
Data Masking Facility (CDMF) algorithm and a cipher key to decipher data
(ciphertext). This verb results in data called plaintext.

Performance can be enhanced if you align the start of the plaintext and ciphertext
variables on a four-byte boundary.

Both single-DES and triple-DES are performed based on the length of the key.
DATA, CIPHER, and DECIPHER key types can be used. For additional information
about the ciphering verbs, see “Ensuring Data Confidentiality” on page 6-1.

The starting address of plaintext cannot begin within the ciphertext variable.

The text_length variable is restricted to a maximum value of 32MB - 8 bytes, and
to 64MB - 8 bytes in the OS/400 environment.

The installed Function Control Vector regulates the maximum data ciphering
capability to one of CDMF, single-DES, or triple-DES.

CSNBDEC

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

key_identifier Input String 64 bytes

text_length In/Output Integer

ciphertext Input String text_length bytes

initialization_vector Input String 8 bytes

rule_array_count Input Integer zero, one, two, or three

rule_array Input String rule_array_count * 8 bytes
array

chaining_vector In/Output String 18 bytes

plaintext Output String text_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_identifier
The key_identifier parameter is a pointer to a string variable containing an
internal key-token or a key label of an internal key-token record in key storage.

text_length
The text_length parameter is a pointer to an integer variable. On input, the
text_length variable contains the number of bytes of data in the ciphertext
variable. On output, the text_length variable contains the number of bytes of
data in the plaintext variable.

Chapter 6. Data Confidentiality and Data Integrity ~ 6-5

Decipher

CCA Release 2.52

ciphertext
The ciphertext parameter is a pointer to a string variable containing the text to
be deciphered.

initialization_vector
The initialization_vector parameter is a pointer to a string variable containing
the initialization_vector the verb uses with the input data.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. This value must be zero,
one, two, or three for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters.

For an adapter that supports both DES and CDMF, you can choose the
encryption process.

The rule_array keywords are shown below:

Keyword Meaning

Deciphering method (one, optional)

CBC Specifies cipher-block chaining. The data must be a multiple
of eight bytes. This is the default.

X9.23 Specifies cipher-block chaining with one to eight bytes of
padding. This is compatible with the requirements in ANSI
Standard X9.23.

ICV (one, optional)

INITIAL Specifies use of the initialization vector from the key token or
the initialization vector to which the initialization_vector
parameter points. This is the default.

CONTINUE Specifies use of the initialization vector to which the
chaining_vector parameter points. The CONTINUE keyword
is not valid with with the X9.23 keyword.

Decryption process (one, optional)

DES Specifies use of the DES ciphering algorithm. If an adapter
does not support DES general data-decipherment, the verb is
rejected. This is the default on an adapter that supports both
DES and CDMF.

CDMF Specifies use of the CDMF ciphering algorithm.

chaining_vector
The chaining_vector parameter is a pointer to a string variable containing the
segmented data between calls by the security server. The output chaining
vector is contained in bytes zero through seven.

Note: The application program must not change the data in this variable.

plaintext
The plaintext parameter is a pointer to a string variable containing the plaintext
returned by the verb. The starting address of plaintext variable cannot begin
within the ciphertext variable. The verb updates the text_length variable to the

6-6 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 Decipher
length of the plaintext when it returns. The length will be different when
padding is removed.

Required Commands

The Decipher verb requires the Decipher command (offset X'000F') to be enabled
in the hardware.

Chapter 6. Data Confidentiality and Data Integrity ~ 6-7

Encipher

CCA Release 2.52

Encipher (CSNBENC)

Platform/ 0s/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X
The Encipher verb uses the DES algorithm and a secret key to encipher data. This
verb returns data called ciphertext.
The returned ciphertext can be as many as eight bytes longer than the plaintext
due to padding. Ensure the ciphertext variable is large enough to receive the
returned data.
Performance can be enhanced by aligning the start of the plaintext and ciphertext
variables on four-byte boundaries.
DATA, CIPHER, and ENCIPHER key-types can be used. Both single-DES and
triple-DES are performed based on the length of the key. For additional information
about the ciphering verbs, see “Ensuring Data Confidentiality” on page 6-1.
Restrictions
The text_length variable is restricted to a maximum value of 32MB - 8 bytes and to
64MB - 8 bytes in the OS/400 environment.
The installed Function Control Vector regulates the maximum data ciphering
capability to one of CDMF, single-DES, or triple-DES.
Format
CSNBENC
return_code Output Integer
reason_code Output Integer
exit_data_length In/Output Integer
exit_data In/Output String exit_data_length bytes
key_identifier In/Output String 64 bytes
text_length In/Output Integer
plaintext Input String text_length bytes
initialization_vector Input String 8 bytes
rule_array_count Input Integer zero, one, two, or three
rule_array Input String rule_array_count * 8 bytes
array
pad_character Input Integer
chaining_vector In/Output String 18 bytes
ciphertext Output String updated text_length bytes
Parameters
For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.
key_identifier
The key_identifier parameter is a pointer to a string variable containing an
internal key-token or the key label of an internal key-token record in key
storage.
6-8 1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

Encipher

text_length
The text_length parameter is a pointer to an integer variable. On input, the
text_length variable contains the number of bytes of data in the cleartext
variable. On output, the text_length variable contains the number of bytes of
data in the ciphertext variable.

plaintext
The plaintext parameter is a pointer to a string variable containing the text to be
enciphered.

initialization_vector
The initialization_vector parameter is a pointer to a string variable containing
the initialization_vector the verb uses with the input data.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero,
one, two, or three for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

Ciphering method (one, optional)

CBC Specifies cipher-block chaining. The data must be a multiple
of eight bytes. This is the default.

X9.23 Specifies cipher block chaining with one to eight bytes of
padding. This is compatible with the requirements in ANSI
Standard X9.23.

ICV (one, optional)

INITIAL Specifies use of the initialization vector from the key token or
the initialization vector to which the initialization_vector
parameter points. This is the default.

CONTINUE Specifies use of the initialization vector to which the
chaining_vector parameter points. The CONTINUE keyword
is not valid with the X9.23 keyword.

Encryption process (one, optional)

DES Specifies use of the DES ciphering algorithm. If an adapter
does not support DES general data encipherment, the verb is
rejected. This is the default on an adapter that supports both
DES and CDMF.

CDMF Specifies use of the CDMF ciphering algorithm.

pad_character
The pad_character parameter is a pointer to an integer variable containing a
value used as a padding character. The value must be in the range from 0 to
255. When you use the X9.23 ciphering method, the security server extends
the plaintext with a count byte and padding bytes as required.

Chapter 6. Data Confidentiality and Data Integrity ~ 6-9

Encipher CCA Release 2.52

chaining_vector
The chaining_vector parameter is a pointer to a string variable containing a
work area that the security server uses to carry segmented data between
procedure-calls.

Note: The application program must not change the data in this variable.

ciphertext
The ciphertext parameter is a pointer to a string variable containing the
enciphered text returned by the verb. The starting address of the ciphertext
variable cannot begin within the plaintext variable. The returned ciphertext
might be up to eight bytes longer than the plaintext because of padding. The
verb updates the text_length variable to the length of the ciphertext when it
returns. The length will be different when padding is added.

Required Commands

The Encipher verb requires the Encipher command (offset X'000E') to be enabled
in the hardware.

6-10 I1BM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52

MAC_Generate

MAC_Generate (CSNBMGN)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

The MAC_Generate verb generates a message authentication code (MAC) for a
text string that you supply. For additional information about using the MAC
generation and verification verbs, see “Ensuring Data Integrity” on page 6-3.

Performance can be enhanced by aligning the start of the text variable on a
four-byte boundary.

You specify the message authentication code process through the choice of a
rule-array keyword. Note that there are defaults based on your use of a
single-length or double-length key.

X9.1-1
ANSI X9.9-1 procedure, by default when you supply a single-length key. This is
the same as ISO/IEC 9797-1, Algorithm 1.

X9.190PT
ANSI X9.19 Optional Procedure, by default when you supply a double-length key.
This is the same as ISO/IEC 9797-1, Algorithm 3.

EMVMAC and EMVMACD
EMV authentication processes.® The verb extends the text you supply with X'80'
and the minimum number (0...7) bytes of X'00' for the extended message to be
a multiple of 8 bytes in length. The MAC is computed based on ISO/IEC 9797-1,
Algorithm 1 or 3 depending on key length. When specifying a single-length key,
use EMVMAC. When specifying a double-length key, use EMVMACD.

Note: The EMV specification permits the MAC to be 4, 5, ..., 8 bytes in length.
The MAC_Verify verb only supports MAC lengths of 4, 6, and 8 bytes.

You can specify any of these key types: DATA, DATAM, or MAC.

The text_length variable must be at least 8 bytes, and less than 32MB - 8 bytes, or
less than 64MB - 8 bytes in the OS/400 environment.

Support for EMVMAC and EMVMACD begins with Release 2.51.

3 See the EMV 4.0 Book 2, Annex A.1.2, for information about this form of MAC generation.

Chapter 6. Data Confidentiality and Data Integrity ~ 6-11

MAC_Generate

Format

Parameters

CCA Release 2.52

CSNBMGN

return_code Output Integer

reason_code Output Integer

exit_data_length In/Output Integer

exit_data In/Output String exit_data_length bytes

key_identifier Input String 64 bytes

text_length Input Integer

text Input String text_length bytes

rule_array_count Input Integer zero, one, two, or three

rule_array Input String rule_array_count * 8 bytes
array

chaining_vector In/Output String 18 bytes

MAC Output String 4, 6, 8, or 9 bytes

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-11.

key_identifier
The key_identifier parameter is a pointer to a string variable containing an
internal key-token or the key label of an internal key-token record in key
storage. Use either MAC, DATA, or DATAM key-types. Keys can be either
single length or double length.

text_length
The text_length parameter is a pointer to an integer variable containing the
number of data bytes in the text variable.

text
The text parameter is a pointer to a string variable containing the text that the
hardware uses to calculate the MAC.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable containing
the number of elements in the rule_array variable. The value must be zero,
one, two, or three for this verb.

rule_array
The rule_array parameter is a pointer to a string variable containing an array of
keywords. The keywords are eight bytes in length, and must be left-justified
and padded on the right with space characters. The rule_array keywords are
shown below:

Keyword Meaning

MAC ciphering-method (one, optional)

EMVMAC Specifies the EMV-related message-padding and calculation
method. You must also specify a single-length key.

EMVMACD Specifies the EMV-related message-padding and calculation
method. You must also specify a double-length key.

X9.9-1 Specifies the ANSI X9.9-1 and X9.19 Basic Procedure. This
is the default for a single-length key.

X9.190PT Specifies the ANSI X9.19 Optional Procedure. This is the

default for a double-length key.

6-12 IBM 4758 CCA Basic Services, Release 2.52, April 2004

CCA Release 2.52 MAC_Generate

Keyword Meaning

Segmenting control (one, optional)

ONLY Specifies the application program does not use segmenting.
This is the default.

FIRST Specifies this is the first segment of data from the application
program.

MIDDLE Specifies this is an intermediate segment of data from the
application program.

LAST Specifies this is the last segment of data from the application
program.

MAC length and presentation (one, optional)

MACLEN4 Specifies a four-byte MAC. This is the default.
MACLEN6 Specifies a six-byte MAC.

MACLENS Specifies an eight-byte MAC.

HEX-8 Specifies a four-byte MAC and presents it as eight

hexadecimal characters.

HEX-9 Specifies a four-byte MAC and presents it as two groups of
four hexadecimal characters separated by a space character.

chaining_vector
The chaining_vector parameter is a pointer to a string variable containing a
work area the security server uses to carry segmented data between procedure
calls.

Note: The application program must not change the data in this variable.
MAC
The MAC parameter is a pointer to a string variable containing the resulting

MAC returned by the verb. The value is left-justified in the variable. Allocate a
variable large enough to receive the resulting MAC value.

Required Commands
The MAC_Generate verb requires the Generate MAC command (offset X'0010') to
be enabled in the hardware.

Chapter 6. Data Confidentiality and Data Integrity 6-13

MAC_Verify

CCA Release 2.52

MAC_Verify (CSNBMVR)

Platform/ 0S/2 AIX Win NT/ 0S/400
Product 2000
IBM 4758-2/23 X X X X

Restrictions

The MAC_Verify verb verifies a message authentication code (MAC) for a text
string that you supply. For additional information about using the MAC generation
and verification verbs, see “Ensuring Data Integrity” on page 6-3.

Performance can be enhanced by aligning the start of the text variable on a
four-byte boundary.

You specify the message authentication code process through the choice of a
rule-array keyword. Note that there are defaults based on your use of a
single-length or double-length key.

X9.1-1
ANSI X9.9-1 procedure, by default when you supply a single-length key. This is
the same as ISO/IEC 9797-1, Algorithm 1.

X9.190PT
ANSI X9.19 Optional Procedure, by default when you supply a double-length key.
This is the same as ISO/IEC 9797-1, Algorithm 3.

EMVMAC and EMVMACD
EMV authentication procedure.* The verb extends the text you supply with X'80'
and the minimum number (0...7) bytes of X'00' for the extended message to
become a multiple of 8 bytes in length. The MAC is computed based on ISO/IEC
9797-1, Algorithm 1 or 3 depending on key length. When specifying a
single-length key, use EMVMAC. When specifying a double-length key, use
EMVMACD.

Note: The EMV specification permits the MAC to be 4, 5, ..., 8 bytes in length.
This verb only suppo