
(1)
f (x) ∼

∞∑
n=−∞

cneinx,

cn =
1

2π

∫ π
−π
f (x)e−inx dx.

In the case of the line, the decomposition is
given by the Fourier transform and the Fourier
inversion formula, which for sufficiently good
functions we write as 

(2)
f̂ (y) =

∫∞
−∞
f (x)e−2πixy dx,

f (x) =
∫∞
−∞
f̂ (y)e2πixy dy.

And in the case of a finite abelian group G , the
expansion is simply 

(3) f (x) =
1
|G|

∑
ω

[ ∑
y∈G

f (y)ω(y)
]
ω(x),

the sum being taken over all multiplicative char-
acters of the group.

Multiplicative characters are less helpful in ex-
ploiting a nonabelian group of symmetries be-
cause a multiplicative character must send every
commutator xyx−1y−1 into 1. To be able to do
harmonic analysis with nonabelian groups, one
introduces a multidimensional generalization
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Group Representations
and Harmonic Analysis

from Euler to
Langlands, Part II

Anthony W. Knapp

T
he essence of harmonic analysis is to
decompose complicated expressions
into pieces that reflect the structure
of a group action when there is one.
The goal is to make some difficult

analysis manageable.
In the seventeenth and eighteenth centuries,

the groups that arose in this connection were the
circle R/2πZ , the line R , and finite abelian
groups. Embedded in applications were de-
compositions of functions in terms of multi-
plicative characters, continuous homomor-
phisms of the group into the nonzero complex
numbers. In the case of the circle, the decom-
position is just the expansion of a function on
(−π,π ) into its Fourier series 
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of multiplicative character, the group represen-
tation.

A representation of a group G on a complex
vector space V is a group action of G on V by
linear transformations, i.e., a homomorphism
of G into the group of invertible linear trans-
formations on V. Often the group G and the vec-
tor space V are topologized, and the group ac-
tion is then normally assumed to be continuous.
A multiplicative character ω gives a represen-
tation on the 1-dimensional space C of com-
plex numbers, the action by g ∈ G being multi-
plication by ω(g).

The end of the nineteenth century was a pe-
riod when Lie and Klein were leading mathe-
maticians and when group actions were being in-
tensely studied, including group actions by linear
fractional transformations. In this atmosphere
it is natural to expect that people would have
looked at group actions by linear transformations
as well, thereby discovering group representa-
tions. But this is not at all how group represen-
tations were introduced.

Finite Groups
In his work on algebraic number theory,
Dedekind noticed a curious thing about finite
abelian groups. Let G = {g1 = 1, g2, . . . , gh} be a
finite group of order h, and let xg1 , . . . , xgh be
commuting independent variables parametrized
by the elements of G. Dedekind worked with the
determinant θ(xg1 , . . . , xgh ) of the matrix
(xgig−1

j
) , and in the abelian case he proved that

θ admits a factorization

θ(xg1 , . . . , xgh ) =
∏
χ

( h∑
j=1

χ(xgj )xgj
)
,

the product being taken over all multiplicative
characters of G .

Dedekind wondered to Frobenius how this
result might generalize to the nonabelian case,
and Frobenius ([4], vol. III) began his work in rep-
resentation theory in 1896 by introducing (irre-
ducible) characters for arbitrary finite groups and
solving Dedekind’s problem. Today a character
is the trace of a representation, but Frobenius
did not introduce representations right away. In-
stead, doing mathematics that looks strange
today, he initially worked directly with charac-
ters, introducing finite-dimensional representa-
tions only in a later paper.

Burnside, starting in 1904, and the young
I. Schur, ([13], vol. I), starting in 1905, each redid
the theory, the primary objects of each study
being matrix representations (homomorphisms
into the group of invertible matrices of some
size). According to E. Artin ([1], p. 528), “It was
Emmy Noether who made the decisive step. It
consisted in replacing the notion of a matrix by

the notion for which the matrix stood in the
first place, namely, a linear transformation of a
vector space.” Noether’s definition was thus es-
sentially the modern general definition of rep-
resentation given above. For Burnside and Schur
the spaces of representations were spaces
V = Cn of column vectors, and the linear trans-
formations were viewed as matrices. Later when
representation theory was extended to Lie groups
and when quantum mechanics forced infinite-
dimensional representations into the study, it
would have been awkward to proceed without
Noether’s viewpoint.

Two finite-dimensional representations of G,
π on V and π ′ on V ′ are equivalent if there is
an invertible linear map E : V → V ′ such that
π ′(g)E = Eπ (g) for all g ∈ G . An invariant sub-
space U for π is a vector subspace such that
π (g)U ⊆ U for all g ∈ G. The finite-dimensional
representation π is said to be irreducible if V
has no proper nonzero invariant subspaces.

The outcome of the work of Burnside and
Schur, partly reworded in terms of linear trans-
formations, was an abstract theory establishing
principles for finite groups that in retrospect one
might look for in other settings:

(P1) (Unitarity and complete reducibility).
Every finite-dimensional representation is equiv-
alent to a representation by unitary matrices.
Then the orthogonal complement of an invari-
ant subspace is invariant, and it follows that
every finite-dimensional representation is the di-
rect sum of irreducible representations. (These
conclusions were already known; Burnside’s con-
tribution was to observe that complete re-
ducibility is a consequence of unitarity.)

(P2) (Schur’s Lemma). If π on V and π ′ on
V ′ are irreducible representations and
E : V → V ′ is a linear map such that
π ′(g)E = Eπ (g) for all g ∈ G , then E = 0 or E is
invertible. If V = V ′, then E is scalar. (The first
conclusion is due to Burnside, the second to
Schur.)

(P3) (Schur orthogonality). If π and π ′ are in-
equivalent irreducible unitary representations,
then ∑

g∈G
πij (g)π ′kl(g) = 0.

Also 1
|G|

∑
g∈G

πij (g)πkl(g) =

{
1/dimπ if (i, j) = (k, l)
0 otherwise.

(P4) (Fourier inversion). Let π vary through a
complete set of inequivalent irreducible unitary
representations of G . If f is a complex-valued
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function on G , define π (f ) =
∑
x∈G f (x)π (x) .

Then 

f (1) =
1
|G|

∑
π

(dimπ )Trace(π (f )).

(P5) (Completeness). Let π vary through a
complete set of inequivalent irreducible unitary
representations of G . If f is a complex-valued
function on G , define π (f ) =

∑
x∈G f (x)π (x) .

Then ∑
x∈G

|f (x)|2 =
1
|G|

∑
π

(dimπ )‖π (f )‖2,

where ‖ · ‖ denotes the Hilbert-Schmidt norm
(the square root of the sum of the absolute value
squared of the entries).

To do ordinary harmonic analysis with a par-
ticular finite group is only a little more compli-
cated than in the finite abelian case. We can il-
lustrate some of the five principles above with
the symmetric group on three letters. For this
group G, there are three inequivalent irreducible
representations, of dimensions 1, 1, and 2. They
are the trivial representation 1, the sign repre-
sentation, and the representation π on the plane
obtained by placing an equilateral triangle with
its center at the origin and considering the ef-
fect of permuting the vertices. For the 2-dimen-
sional representation π , suppose that the ver-
tices in terms of polar coordinates are (1,0◦) ,
(1,120◦) , (1,240◦) , numbered 1,2,3. We con-
vert each linear transformation π (g) to a matrix,
using the standard basis, and obtain 

π ((1 2)) =
(

cos 120◦ cos 30◦
sin 120◦ sin 30◦

)
and

π ((2 3)) =
(

1 0
0 −1

)
,

with π given by a corresponding product on
each of the other permutations. We can view
the entries as functions on G as follows: 

g \ entry π11(g) π12(g) π21(g) π22(g)

(1) 1 0 0 1

(1 2 3) −1/2 −√3/2
√

3/2 −1/2
(1 3 2) −1/2

√
3/2 −√3/2 −1/2

(1 2) −1/2
√

3/2
√

3/2 1/2
(2 3) 1 0 0 −1

(1 3) −1/2 −√3/2 −√3/2 1/2

For the sign representation the corresponding
entries as a function of g are 1,1,1,−1,−1,−1,
and for the trivial representation they are all 1.
Direct computation shows that the six columns
are mutually orthogonal. The displayed columns

have norm squared equal to 3, and the columns
for the sign and trivial representations have
norm squared equal to 6. This is (P3). Because
of the orthogonality the six columns form a
basis for the 6-dimensional space of complex-
valued functions on G, and (P5) follows from lin-
ear algebra. In a sense (P4) and (P5) are equiva-
lent: Define convolution on G by
f ∗ h(x) =

∑
y∈G f (xy−1)h(y). Then (P5) amounts

to (P4) applied to the function f ∗ f∗ , where
f∗(x) = f (x−1). So (P5) is a special case of (P4).
But the functions f ∗ f∗ span the space of all
functions, and therefore the special case (P5)
implies the general case (P4). This example is
worked out in more detail in Gross [5].

Another part of the abstract theory is the
idea of an induced representation, which is due
to Frobenius. Induction is a way of forming a rep-
resentation of G from a representation of a sub-
group H. Let ϕ be a representation of H on a
space Vϕ . Then the induced representation
π = indGH ϕ acts in the vector space 

{f : G → Vϕ | f (xh) =ϕ(h)−1(f (x)), h ∈ H}

by (π (g)f )(x) = f (g−1x). If ϕ is the trivial repre-
sentation of H, then π is the left regular rep-
resentation of G on functions on G/H, i.e., the
representation l given by (l(g)f )(x) = f (g−1x). In-
duced representations of finite groups play a role
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with Artin L functions, which we shall discuss
shortly.

Making use of harmonic analysis with a par-
ticular finite group does require knowing the ir-
reducible representations of the group, or at
least their characters. These were worked out
over a period of time for the symmetric and al-
ternating groups by Frobenius and Young inde-
pendently. “Young diagrams” remain the stan-
dard device for manipulating such repre-
sentations.

One of the first serious applications of the rep-
resentation theory of finite groups to something
other than representation theory was the fol-
lowing theorem of Frobenius (1901): A transitive
permutation group on n symbols whose opera-
tions other than the identity move all or all but
one of the symbols contains a normal subgroup
of order n. Another early application was the the-
orem of Burnside (1904) that any group of order
paqb is solvable if p and q are prime. After
those early results, representation theory con-
tinued to play a key role at various stages in the
classification of finite simple groups.

Another application of the representation
theory of finite groups occurs with Artin L func-
tions, which Artin introduced in the 1920s. An
Artin L function over the rationals Q encodes
in a generating function information about how
an irreducible monic polynomial over Z factors
when reduced modulo each prime. For the poly-
nomial x2 + 1, the L function is 

(4)

L(s, Q(i)/Q, sgn) =∏
p odd prime

1

1−
(−1
p

)
p−s

,

where 
(−1
p

)
is the Legendre symbol that yields 

+1 if −1 is a square modulo p and yields −1 if
not. This L function is subtly different from one
introduced by Euler, in which 

(−1
p

)
is replaced

by an expression χ−(p) that is +1 or −1 ac-
cording as p is congruent to 1 or 3 modulo 4.
The fact that 

(−1
p

)
= χ−(p) is well known as a

preliminary case of quadratic reciprocity, and
thus Euler’s L function and (4) are equal. This
role for reciprocity admits a vast generalization,
in which representation theory predominates,
and we shall return to this matter a little later.
But let us see where representation theory en-
ters the very definition of Artin L functions. A
more general Artin L function encodes certain
information about prime ideals in the ring of in-
tegers of a number field (finite extension of Q ).
The L function depends on a complex parame-
ter s , a finite Galois extension K/k of number
fields, and a representation of the (finite) Galois
group of K over k. The exact definition, which
generalizes (4), will not concern us. However,
when k = K and the representation is trivial, the

L function reduces to what is called the ζ func-
tion of K. Induced representations play an im-
portant role in understanding L functions. The
L function does not change when k is replaced
by a smaller field k0 and the representation is
replaced by the induced representation from
Gal(K/k) to Gal(K/k0). Taking k = K, we see that
the ζ function of K equals the Artin L function
for K/k0 and the left regular representation of
Gal(K/k0) on functions on Gal(K/k0) . Decom-
position of this representation into irreducible
summands gets reflected in a factorization of the
ζ function of K into a product of L functions.
Thus Artin L functions are canonical factors of
ζ functions of number fields, and they arise
naturally by applying the representation theory
of the Galois group.

Lebesgue Integration, Fourier Series, and
Fourier Transform
At almost the same time as the development of
representation theory for finite groups, the the-
ory of Fourier series and the Fourier transform
began to expand rapidly. The impetus was the
introduction of the Lebesgue integral in
Lebesgue’s 1902 thesis and his 1904 book. The
version of (P4) that f (x) =

∑∞
n=−∞ cneinx if∑∞

n=−∞ |cn| <∞ and f is continuous was already
known, as was the significance of (P5) Parse-
val’s equality 1

2π
∫π
−π |f (x)|2 dx =

∑∞
n=−∞ |cn|2

for the completeness of the system of expo-
nentials. But the Lebesgue integral paved the
way for the Riesz-Fischer Theorem in 1907 that
any square-summable sequence {cn}∞n=−∞ is the
sequence of Fourier coefficients of an L2 func-
tion on (−π,π ), thus for a full understanding
that the Fourier coefficient mapping f 7→ {cn} is
an isometric linear map of one L2 space onto an-
other.

Plancherel proved a version of (P5) for the
Fourier transform in 1910, and all later gener-
alizations of this property have been called the
Plancherel formula. In the notation of (2), his re-
sult was that the Fourier transform mapping
f 7→ f̂ on L1 ∩ L2 satisfies ‖f̂‖2

2 = ‖f‖2
2 and that

the Fourier transform therefore extends to an
isometric mapping of L2 into L2. Because the in-
version formula in (2) is of the same type as the
transform itself, the Fourier transform was then
automatically onto L2, and the formalism needed
for harmonic analysis was all in place.

Historically the first operator using the
Lebesgue integral significantly that could be
written with Fourier series in the form 

(5) T
(∑

cneinx
)

=
∑
bncneinx

seems to be the Hilbert transform. Here
bn = −i sgnn. This operator arises by regarding
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f as a function on the unit circle, using the Pois-
son Integral Formula to obtain a harmonic func-
tion on the unit disc, passing to the conjugate
harmonic function normalized to be 0 at the
origin, and finally taking boundary values. This
study was carried out independently by Privalov
(1918) and Plessner (1923), and a version for the
Fourier transform and the half plane may be
handled similarly. In 1927 M. Riesz proved that
the Fourier-series Hilbert transform is bounded
on Lp if 1 < p <∞, and it follows easily that the
partial sums of the Fourier series of Lp functions
converge to the original function in Lp if
1 < p <∞. A similar boundedness result is valid
for the version of the Hilbert transform appro-
priate to the Fourier transform and the half
plane. More complicated operators commuting
with translations were studied beginning in the
1930s, and the subject expanded into several
variables. For the Fourier transform in Rn , for
example, the inversion formula is as in (2), but
with integrations taken over Rn and with xy re-
placed by the dot product x · y. The books of
Zygmund [18] and Stein [14] give expositions of
these theories. One result worthy of special note
because of the way it was adapted later is
Bochner’s Theorem of 1932 on positive definite
functions. A positive definite function f on a
group G is one for which the matrix {f (xix−1

j )}
is always positive semidefinite Hermitian. The
theorem is that among the continuous functions
on Rn, the positive definite functions are exactly
those functions that are Fourier transforms of
finite measures.

Work of Gårding in 1953 combined the Fourier
transform on Rn with an earlier invention, a
“freezing principle”, to extend the scope of the
Fourier transform to situations that do not ex-
hibit symmetry under a group. “Gårding’s in-
equality” gives a lower bound for the inner prod-
uct (Lu,u) , where L is a linear elliptic real
differential operator of order mand where uhas
compact support. Use of the Plancherel formula
handles the case that all terms are of order m
and have constant coefficients. Behavior of a
general operator near a point is approximated
by behavior of one of these special operators with
coefficients constantly equal to the value of the
leading coefficients at that point (thus the “freez-
ing principle”), and such estimates are pieced to-
gether with a partition of unity. The book of
Bers, John, and Schechter [3] recites the details.
The idea of a freezing principle in this context
is one motivation for the more modern theory
of pseudodifferential operators and its gener-
alizations. The freezing principle will come up
again when we consider nilpotent Lie groups.

Compact Groups
Early in the twentieth century all that was needed
to extend parts of representation theory from fi-
nite groups to compact groups was invariant in-
tegration, and this was already in place for the
rotation groups and the unitary groups in 1897
in a paper of A. Hurwitz. The abstract theory and
identification of irreducible representations came
side by side. Schur observed in 1924 that (P1),
(P2), and (P3) extend as soon as one has invari-
ant integration, the sums over G being replaced
by integrals and |G| being replaced by the total
volume. Also Schur worked out the irreducible
representations of the rotation groups and the
unitary groups.

Already in 1913 É. Cartan had proved by al-
gebraic means the Theorem of the Highest
Weight, which classifies the irreducible repre-
sentations of complex semisimple Lie algebras.
But it is doubtful that he saw at that time how
close this result is to a classification of the ir-
reducible representations of compact connected
Lie groups (at least when they are simply con-
nected) or even that he attached special signif-
icance to this problem. Weyl, inspired partly by
Schur’s 1924 paper, developed the theory for
compact connected Lie groups analytically in
the years 1924–26. He used invariant integration
in terms of differential forms, showed that every
element of the group is conjugate to an element
of a maximal torus, gave an integration formula
in terms of integration over conjugacy classes,
and used characters and the integration formula
to reduce a version of the Theorem of the High-
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est Weight to the theory of Fourier series on the
maximal torus. The well-known Peter-Weyl The-
orem, establishing (P5), followed in 1927, and (P4)
for smooth functions is a consequence. Unlike
the case of finite groups, the Peter-Weyl Theo-
rem has to use some analysis, and the Spectral
Theorem for compact self-adjoint operators is
invariably the tool. In a 1929 paper Cartan tied
the algebraic and analytic theories together by
showing the full relationship between complex
semisimple Lie algebras and the real Lie algebras
of compact Lie groups. In the early 1930s the
proofs of existence and uniqueness of Haar mea-
sure by Haar and von Neumann allowed the ab-
stract theory (P1) through (P5) to be extended
routinely to all compact topological groups.

The first mathematical application of har-
monic analysis for compact groups was Cartan’s
1929 reinterpretation of a portion of the theory
of special functions in terms of compact Rie-
mannian symmetric spaces. In the simplest ex-
ample this work clarifies the way in which spher-
ical harmonics and Legendre polynomials arise
from the action of the rotation group SO(3) on
the sphere S2. Gross [5] explains just what the
Cartan theory says about this example.

Rather few applications of harmonic analysis
for compact groups are analogous to what hap-
pens in (5): that the Fourier coefficients of a
function on the group itself get multiplied by
something and one examines the resulting op-
erator. One case of such an application is to Lp
convergence of the partial sums of the Fourier
expansion of a function on a compact group
constant on conjugacy classes. Herz and R. Stan-
ton treated this problem for compact semisim-
ple groups, and Lp convergence takes place for
some range of p’s with 1 + ε < p < 1 + 1/ε. Un-
like the case of classical Fourier series, the best
ε for a given compact semisimple group is
strictly positive.

In most applications of the harmonic analy-
sis of compact groups, a compact group G acts
nontransitively on a measure space X, and one
analyzes an operator on L2(X) that commutes
with the action of G . A case in point is the
Fourier transform on L2(Rn), which commutes
with rotations. One expects harmonic analysis
with the rotation group SO(n) to yield some in-
formation. In fact, Bochner carried out such an
investigation in 1951, using spherical harmon-
ics and (1-dimensional) Hankel transforms. The
book by Stein and Weiss [15] reproduces this in-
vestigation with more emphasis on the group the-
ory.

Applications of compact groups to physics are
of this sort. The representation theory of the spe-
cial unitary group SU (n), for specific values of
n, has played a role in the study of nuclear in-
teractions in elementary-particle theory. In quan-

tum mechanics the things that one observes
from experiments are eigenvalues (or members
of the spectrum if there are not discrete eigen-
values) of certain self-adjoint operators on
Hilbert spaces. Conservation laws correspond to
self-adjoint operators A for which the one-pa-
rameter group of unitary operators eitA com-
mutes with the Hamiltonian. Thus a system of
conservation laws leads to a group of symme-
tries, namely, a group of unitary operators com-
muting with the Hamiltonian. A part of this sym-
metry group, as the theory goes, is some
particular SU (n). Simultaneous observables cor-
respond to commuting one-parameter groups,
hence to a commuting subspace of the Lie al-
gebra. For SU (n), a commuting subspace of the
Lie algebra has dimension ≤ n− 1 (and may as
well be taken to be diagonal), and hence at most
n− 1 simultaneously observable physical quan-
tities can be distinguished by the SU (n) theory.
Elementary particles correspond to certain vec-
tors in the spaces of irreducible representations,
say, to simultaneous eigenvectors of the diago-
nal subgroup (identified when they are equal
up to scalar multiples). Quarks correspond to the
standard basis vectors in the standard repre-
sentation. The power of the theory comes from
the way in which interactions of particles are to
be understood: one takes the tensor product of
the representations, decomposes it according to
(P1), and sees what combinations of particles
occur.

Locally Compact Abelian Groups

In 1934–35 Pontrjagin and van Kampen proved
a duality theorem for locally compact abelian
groups, and later Weil [16] based a theory of har-
monic analysis on this duality theorem. For a
noncompact locally compact abelian group, such
as R, not all the multiplicative characters are of
interest. For R, the function x 7→ e−2πixy is a
multiplicative character whenever y is complex,
but only those characters with y real are of in-
terest. A multiplicative character is said to be uni-
tary if it is everywhere of absolute value 1. (More
generally a representation π in a Hilbert space
is unitary if each operator π (x) is unitary.) If G
is a locally compact abelian group, then the uni-
tary multiplicative characters form a group Ĝ
under pointwise multiplication, and Ĝ becomes
a locally compact abelian group (the dual group)
when topologized with the topology of uniform
convergence on compact sets. For G equal to a
torus Tn or a group Rn , Ĝ consists exactly of
the unitary multiplicative characters that we
have been using, and the topology is the ordi-
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nary one. Thus Ĝ is isomorphic with Zn or Rn

in the two cases. In complete generality the
group Ĝ is locally compact abelian and has a dual̂̂G , and there is a canonical continuous homo-
morphism of G into ̂̂G : If g is in G , then the
corresponding member of ̂̂G , evaluated on a
character ω ∈ Ĝ , takes the value ω(g). The du-
ality theorem says that this homomorphism
G → ̂̂G is a topological isomorphism onto. Pon-
trjagin and van Kampen proved the duality the-
orem as a consequence of a structure theory
that they developed. Weil went on to define a
Fourier transform f 7→ f̂ carrying functions on
G to functions on Ĝ : 

f̂ (ω) =
∫
G
f (x)ω(x)dx,

where dx is Haar measure on G. Weil’s inversion
formula, valid for integrable continuous f ’s
whose Fourier transforms are integrable, says
that there exists a normalization of Haar mea-
sure dω on Ĝ so that 

f (x) =
∫
Ĝ
f̂ (ω)ω(x)dω.

The Plancherel formula ‖f̂‖2
2 = ‖f‖2

2 is a conse-
quence, and thus versions of (P4) and (P5) are
valid for G . Rudin [12] shows how the duality
theorem and harmonic analysis could be devel-
oped together, bypassing the structure theory. 

Adeles and Ideles
Harmonic analysis on locally compact abelian
groups has an important application in alge-
braic number theory, due to Tate. To establish
the setting, it is necessary to take another look
at L functions as they emerged in the 1920s. Even
before Artin introduced his L functions, Hecke
was introducing other kinds. One kind that Hecke
treated was a generalization of Euler’s
L function and other Dirichlet L functions; it was
an L function associated to something called a
Grossencharacter, which we discuss shortly. In
a complicated way, Hecke proved that these 
L functions, which are convergent in a right half
plane, extend meromorphically to the complex
plane, satisfy a functional equation relating the
values at s and 1− s, and are entire except in
the case of ζ(s) itself. Because of some work of
Takagi, Artin realized that his L functions, in the
case that the Galois group is abelian, ought al-
ways to equal Hecke L functions of Grossen-
characters. This expectation led Artin to for-
mulate and then to prove Artin reciprocity, which
is a far-reaching generalization of quadratic rec-
iprocity and is a cornerstone of abelian class field

theory. In turn Artin reciprocity enabled Artin
to prove the expected equality of L functions.
Therefore Artin L functions in the case of abelian
Galois groups satisfy functional equations, and
for nontrivial multiplicative characters of such
Galois groups they are entire.

In their original formulation Grossencharac-
ters have something to do with the ideal class
group of Dedekind, but Chevalley found another
formulation in 1936. A place v of a number field
k is an isomorphism class of field maps of konto
a dense subfield of a nondiscrete locally com-
pact field kv. For k = Q, the places are the em-
beddings of Q into R and into the field Qp of
p-adic numbers for each prime p. Each of the
locally compact fields has an absolute value
mapping, the elements of Qp of absolute value
1 being the closure of those rationals with nu-
merator and denominator prime to p. Chevalley
introduced the group of ideles of k as the mul-
tiplicative subgroup of all elements in the prod-
uct of the multiplicative groups k×v whose ab-
solute value is 1 at all but finitely many v, and
he made this abelian group into a locally com-
pact abelian group by defining a topology suit-
ably. The multiplicative group k× turns out to
have a diagonal embedding into the group of ide-
les. In this terminology a Grossencharacter is sim-
ply a multiplicative character of the group of ide-
les that is trivial on the diagonally embedded k×.

In his 1950 thesis Tate applied harmonic
analysis for locally compact abelian groups in
this situation. The adeles of k are the additive
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subgroup of all elements in 
∏
kvwhose absolute

value is ≤ 1 at all but finitely many v’s. With co-
ordinate-wise multiplication and with a suitable
topology, they form a commutative locally com-
pact ring. By using harmonic analysis on the
adeles and exploiting the interplay between ade-
les and ideles, Tate reinterpreted Hecke’s L func-
tions and showed that the analytic continuation
and functional equation were a consequence of
a Poisson Summation Formula for this setting.
Shortly we shall return to a nonabelian analog
of this result.

Locally Compact Groups
Following the development of quantum me-
chanics about 1927, representation theory ex-
panded to include locally compact groups that
were neither compact nor abelian. The two con-
crete situations studied before 1940 were what
now would be called the Heisenberg group in n
complex variables and the inhomogenous
Lorentz group. In the language of the times, the
representation theory of the Heisenberg group
was studied in the form of projective represen-
tations of the group Cn , functions π satisfying
π (x + y) = c(x, y)π (x)π (y) for nonzero scalars
c(x, y). But we shall stick to group representa-
tions.

The Heisenberg group Hn in n complex vari-
ables is the group of all (z, t) with z ∈ Cn and
t ∈ R having multiplication 

(w, t)(z, t′) = (w + z, t + t′ + Imw∗z),

where w∗ means w conjugate transpose. The
group is isomorphic to the group of matrices
given in block form as 1 z∗ 1

2 |z|2 + it
0 1 z
0 0 1


and has (z, t)−1 = (−z,−t). The center Z is the
set of all (0, t), and Hn/Z ∼= Cn. The early rep-
resentation theory of Hn emerged from research
of Heisenberg, Weyl, Stone, and von Neumann.

The group Hn has the property that every fi-
nite-dimensional unitary representation is triv-
ial on Z and thus factors through to a repre-
sentation of the quotient Cn. Consequently such
representations do not distinguish all the points
of the group. In fact, (P1) is applicable for such
representations ϕ, and we may assume that ϕ
is an irreducible unitary representation of finite
dimension dimϕ. Property (P2) is valid, and
thus ϕ(0, t) is scalar, hence of the form e2πitx

times the identity. Meanwhile a little calculation
shows that 

(w, t)(z, t′)(w, t)−1(z, t′)−1 =

(0, Im(w∗z − z∗w )).

The determinant of ϕ of the left side is the
product of the determinant of ϕ of each fac-
tor and hence is  1 .  Thus
1 = exp(2πi Im(w∗z − z∗w )xdimϕ) for all w
and z , and hence x = 0.

To do harmonic analysis meaningfully, we
are thus led to consider unitary representations
that are infinite-dimensional. This adjustment
requires some refinement of our definitions:
The total space will now be a Hilbert space, the
invariant subspaces of interest are the closed
ones, and a representation is irreducible if it
contains no proper nonzero closed invariant
subspaces. In this language the Stone-von Neu-
mann Theorem says that the infinite-dimen-
sional irreducible unitary representations of Hn,
up to equivalence, are parametrized by a nonzero
λ ∈ R. The representation πλ with parameter λ
acts in L2(Rn) with 

(6)
πλ(x + iy, t)f (x′) =

e2iλy∗x′eiλ(t+y∗x)f (x′ + x).

An infinitesimal version of πλ and the connec-
tion with quantum mechanics will not concern
us here and are discussed at length in Mackey
[11].

The other noncompact nonabelian locally
compact group that was studied before 1940 was
the 10-dimensional inhomogenous Lorentz
group. Again the motivation was quantum me-
chanics. E. Wigner’s well-known work on the
representation theory of this group appeared in
1938 and is discussed in Wightman [17].

In 1936, before Wigner had studied this sec-
ond noncompact nonabelian group, Murray and
von Neumann made a study of rings of opera-
tors that has implications for the abstract the-
ory of group representations. If π is a unitary
representation of G on a separable Hilbert space,
let R(π ) be the smallest weakly closed algebra
of bounded linear operators containing all π (g)
for g ∈ G . We say that π is primary if the cen-
ter of R(π ) consists only of scalar operators. The
orthogonal sum of a finite or countable number
of copies of a single irreducible representation
is always a primary representation. If the primary
representation π is of this special form, we say
that π is of type I. The group G is of type I if
all of its primary representations are of type I.
One of the discoveries of Murray and von Neu-
mann is that there are locally compact groups
that are not of type I; it is known that the (dis-
crete) free group on two generators is such a
group. From work of Mackey and Glimm, it is
known that a separable group G is of type I if
and only if the space of equivalence classes of
irreducible unitary representations is a stan-
dard Borel space; thus the groups that are not
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of type I are pathological for our current pur-
poses, and we shall want to discard them.

A second contribution to the abstract theory
came from Gelfand and Raikov in 1943. If π is
a unitary representation of a locally compact
group G and v is a vector, then the function
g 7→ (π (g)v, v) is continuous positive definite.
They noted the converse (that a continuous pos-
itive definite function is always of this form for
some π and v) and then proved that π is irre-
ducible if and only if π (G)v generates the whole
Hilbert space and (π (g)v, v) lies on an extreme
ray in the cone of all continuous positive defi-
nite functions. Applying the Krein-Milman The-
orem suitably, they were able to conclude that
the irreducible unitary representations of G sep-
arate points. Thus in principle there should be
enough irreducible unitary representations to do
harmonic analysis.

In 1946, inspired by Weil [16], Mackey began
a systematic study of the representation theory
of locally compact groups. By a circuitous route
described in [8], pp. 892–893, Mackey was led
to realize that induced representations, intro-
duced by Frobenius for finite groups, were mean-
ingful and important for separable locally com-
pact groups. The only restriction was that the
subgroup from which the inducing would take
place had to be closed. In fact, the representa-
tions (6) of Hn were induced from 1-dimen-
sional representations. Wigner’s representations
of the inhomogeneous Lorentz group were in-
duced, and so were many others. Mackey went
on to develop a theory in the direction of clas-
sifying the irreducible representations of semi-
direct products of groups when the representa-
tions of each factor are known and the action is
tame enough.

The final piece of the abstract theory is the
Plancherel formula. Mautner and Segal proved
independently in 1950 that any type I group
that is unimodular (i.e., has left Haar measure
equal to right Haar measure) has a unique mea-
sure dµ on the space of equivalence classes of
irreducible unitary representations such that
‖f‖2 =

∫ ‖π (f )‖2
HS dµ(π ) for all f ∈ L2(G). Fur-

ther exposition of the abstract theory may be
found in Mackey [10].

Thus early in the development of represen-
tation theory of noncompact nonabelian groups,
three key questions about particular groups
emerged: Is G of type I? If so, what are the ir-
reducible unitary representations of G? If so
and if G is unimodular, what concretely is the
Plancherel measure? These questions have
turned out to be much harder for general locally
compact groups than for compact or abelian
groups.

Among the classes of locally compact groups
that have been studied are nilpotent Lie groups,

solvable type I Lie groups, semisimple Lie groups
with finite center, general connected Lie groups
of type I, and certain p-adic groups. We discuss
only some of these.

Nilpotent and Solvable Lie Groups
A nilpotent Lie group has a simply connected cov-
ering group homeomorphic to Rn , and the pro-
totype is any connected closed subgroup of
upper-triangular complex matrices with 1’s on
the diagonal. The Heisenberg group Hn is an ex-
ample. A nilpotent Lie group is always unimod-
ular of type I. Kirillov showed that the irreducible
unitary representations are always induced from
1-dimensional representations of closed sub-
groups, he classified these representations, and
he found the explicit Plancherel measure. In his
work he developed for irreducible representa-
tions an “orbit picture” that had been intro-
duced earlier by Harish-Chandra in the compact
case. The orbit picture associates representa-
tions to data attached to orbits of the action by
the group on the vector-space dual of the Lie al-
gebra. It is described at length in Howe [6].

Folland in 1973 used harmonic analysis for
the Heisenberg group to give new estimates for
a subelliptic differential operator in Euclidean
space that amounts to the operator

b = ∂̄b∂̄∗b + ∂̄∗b ∂̄b associated with the boundary
of the unit ball in Cn . It turns out that this op-
erator can be regarded as a constant-coefficient
differential operator on Hn−1, and analysis using
Hn−1 gives sharper estimates than the tradi-
tional Euclidean approach. In 1974 Folland and
Stein combined this idea for Hn−1 with a freez-
ing principle to investigate b for strictly
pseudoconvex domains. Rothschild and Stein in
1976 combined representation theory for other
nilpotent Lie groups with a freezing principle to
analyze subelliptic operators 

∑
X2
i on a mani-

fold when the Xi are vector fields that generate,
with their commutators through a fixed order,
the full tangent space at each point of the man-
ifold. No example is known of broken symme-
try in mathematics that can be handled by com-
bining a freezing principle with the
representation theory of some nonnilpotent
group.

A solvable Lie group has a simply connected
covering group homeomorphic to Rn , and the
prototype is any connected closed subgroup of
upper triangular complex matrices. Such a group
may fail to be unimodular, and it may fail to be
of type I. L. Auslander and Kostant in 1969 ex-
tended Kirillov’s orbit picture to classify the ir-
reducible unitary representations of type I solv-
able Lie groups. Pukanszky gave a version of a
Plancherel formula that did not require the group
to be unimodular or even type I.
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Semisimple Lie Groups
The largest area of research has been on semi-
simple Lie groups, which are always unimodu-
lar and were shown to be of type I by Harish-
Chandra in a 1953 paper. We concentrate on
semisimple Lie groups that can be realized as
groups of real or complex matrices. Apart from
isomorphism, the semisimple Lie groups of ma-

trices are exactly the connected closed sub-
groups of complex matrices that are closed
under conjugate transpose and have discrete
center (necessarily then finite). Special linear
groups, symplectic groups, and various isome-
try groups of quadratic forms provide exam-
ples. For a book-length exposition of the theory,
see [7]. The first such group to be considered was
the group SL(2,R) of real 2-by-2 matrices of de-
terminant one. Bargmann, presumably moti-
vated by a desire to supplement Wigner’s 1938
paper, classified the irreducible unitary repre-
sentations of this group (or, more precisely, a
conjugate of it) in a famous 1947 paper.
Bargmann even gave information about decom-
posing L2 of the group in a way that anticipated
the idea of a Plancherel formula. The irreducible
unitary representations occur in series. One of
these, now called the spherical principal series,
contains a representation P+,iv for each real v .
The representation acts as in L2(R) by 

(7a)
P+,iv

(
a b
c d

)
f (x) =

|bx + d|−1−iv f ((ax + c)(bx + d)−1),

and only the representations with v ≥ 0 are
needed in the classification. The representation
P−,iv of the nonspherical principal series acts in
L2(R) for real v by 

(7b)
P−,iv

(
a b
c d

)
f (x) =

sgn(bx + d)P+,iv
(
a b
c d

)
f (x),

and only the representations with v > 0 are
needed in the classification. Bargmann found
also two sets of representations now called dis-
crete series. One of these contains a represen-
tation D+,n for each integer n ≥ 2. The repre-
sentation acts in the space of analytic functions
on the upper half plane square integrable with
respect to yn−2 dxdy. The action is 

(8)
D+,n

(
a b
c d

)
f (z) =

(bz + d)−nf ((az + c)(bz + d)−1).

There is a corresponding representation D−,n in
the space of complex conjugates. Another series,
the complementary series, acts as in (7a) but
with iv replaced by a real parameter u between
0 and 1 and with a complicated inner product
that is not obviously positive definite. And there
were the trivial 1-dimensional representation
and two representations now called limits of dis-
crete series, D+,1 and D−,1. That was all. Most
striking of all, Bargmann saw that only the prin-
cipal series and the discrete series contributed
to the left regular representation
l(g)F (x) = F (g−1x) of the group on L2 of the

Figure 1. Unitary points in a nonspherical principal series of 
Sp(6,  2) with a real character on A.

Figure 2. Known unitary points in the spherical principal series of
Sp(6, 2) with a real character on A.
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group. The complementary series played no role.
Moreover, the discrete series contributed dis-
cretely; this was a new phenomenon not seen be-
fore in noncompact groups.

Also in 1947 Gelfand and Naimark investi-
gated SL(2,C). They found principal series and
complementary series, and they found that there
were no discrete series. In 1950 Gelfand and
Naimark published a book giving extensive in-
formation about the representation theory of
complex classical semisimple Lie groups. No dis-
crete series appeared. The 1950 book also
showed how to use integral geometry to obtain
an explicit Plancherel formula (decomposing
L2(G)) for G = SL(n,C).

Mackey seems to have been the first to real-
ize that the representations (7) are induced rep-
resentations, induced from 1-dimensional rep-
resentations of the upper-triangular subgroup.
Harish-Chandra obtained the Plancherel formula
for SL(2,R) in 1952, and Gelfand and Graev gen-
eralized the argument to SL(n,R) in 1953. From
these results a picture emerged of L2(G) as hav-
ing finitely many pieces, each one related to the
harmonic analysis of a certain kind of maximal
abelian subgroup called a Cartan subgroup. For
SL(n,C) there is only one such group up to con-
jugacy (the diagonal subgroup), and the
Plancherel formula reduces to Fourier analysis
of the diagonal subgroup. For SL(2,R) , there
are two nonconjugate Cartan subgroups (the di-
agonal subgroup and the rotation subgroup).
The analysis leading to the Plancherel formula
is subtle, but the heart of it is Fourier analysis
on the two Cartan subgroups. For SL(n,R), there
are 

[
n
2

]
+ 1 nonconjugate Cartan subgroups.

Harish-Chandra realized that it was important
to find representations corresponding to a com-
pact Cartan subgroup and that these should be
the discrete series—the representations occur-
ring discretely in the Plancherel formula. He
first constructed generalizations of (8) to other
groups G that act on bounded symmetric do-
mains, but he knew that was not enough since
such groups do not exhaust the groups with
compact Cartan subgroups. Finally after a long
sequence of deep papers culminating in an epic
1966 paper in Acta Mathematica, he completed
a classification of the discrete series. Later he
proved that the representations contributing to
the Plancherel formula are induced from para-
bolic subgroups written MAN, each MAN con-
structed from a distinct conjugacy class of Car-
tan subgroups, with the inducing representation
consisting of a discrete series on M, a unitary
multiplicative character on the Euclidean group
A , and the trivial representation on the simply
connected nilpotent group N. Harish-Chandra
published the final steps in the proof of the
Plancherel formula in 1976.

As was already true in SL(2,R) , there are
other irreducible unitary representations than
those needed for the Plancherel measure. Their
classification has been more elusive and remains
unsolved. A giant advance was made by Lang-
lands in 1973, who classified all irreducible “ad-
missible” representations, which include all ir-
reducible unitary representations. In the final
form of this classification, irreducible admissi-
ble representations are seen to be quotients of
induced representations from the same sub-
groups MAN as above (except that it may be nec-
essary to use more than one N for given MA).
On M is a discrete series or a limit of discrete
series, and on A is a multiplicative character
whose modulus has logarithm in a certain cone.
Again the trivial representation is used on N. The
question about unitarity therefore reduces to
deciding which Langlands quotients, as they are
called, can be made unitary by introducing a
new inner product. For SL(2,R) the comple-
mentary series are obtained this way, and one
requires an answer in general. Progress has been
slow and has been based on finding methods for
settling unitarity of classes of Langlands quo-
tients. These methods are now sufficiently pow-
erful that Vogan has completely settled SL(n,C)
and essentially SL(n,R), and Barbasch has set-
tled the complex orthogonal and symplectic
groups. But there is a possibility that the answer
for all G may be too complicated to state rea-
sonably. Figures 1 and 2, taken from [2], illus-
trate two situations in a group Sp(6,2); a rep-
resentation of an M has been fixed in each case,
and the picture shows the 2-dimensional picture
of logarithms of real multiplicative characters of
A in the appropriate cone. The heavily marked
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regions, lines, and points indicate parameters
that correspond to unitary representations. The
picture is complete in the case of Figure 1 and
is believed to be complete in the case of Figure
2. One can prove for general G that the para-
meters of the unitary representations form polyg-
onal complexes of this sort, but the description
of the parameters of the unitary representations
in these examples is already so complicated that
most researchers in the field are looking for
“important” irreducible unitary representations
rather than all irreducible unitary representa-
tions.

We mention two applications of harmonic
analysis with semisimple groups. One is to the
decomposition of spaces of functions on semi-
simple symmetric spaces G/H, where H is the
fixed group of an involution of G . This theory
is now fairly complete and may be viewed as a
simultaneous and remarkable extension of three
theories: Cartan’s 1929 theory for the compact
case, a theory for Riemannian symmetric spaces
begun by Harish-Chandra in 1958 and extended
by Helgason in the 1960s and 1970s, and Har-
ish-Chandra’s 1976 theory for the group case
(G×G)/diag(G).

Langlands Program
The other application is to the Langlands pro-
gram in number theory and arithmetic geome-
try, for which Langlands received the Wolf Prize
in 1996 (Notices, February 1996, p. 221). The
Langlands program has several aspects and we
mention just one, which is the search for a gen-
eralization of Artin reciprocity to nonabelian
Galois extensions of number fields k. The hope
is to identify all Artin L functions with other
kinds of L functions that have analytic contin-
uations and functional equations. A source of
some L functions with good analytic behavior
is a further class of L functions introduced by
Hecke and given in terms of cusp forms. In the
Langlands theory they get incorporated into a
generalization of Tate’s thesis, whose results
were discussed above. Tate’s thesis is regarded
in the Langlands theory as handling 1-by-1 ma-
trices, because the ideles may be regarded as
GL1(A), where A is the ring of adeles of k. The
Hecke L functions arise in the 2-by-2 case of the
Langlands theory. A little more specifically, a
Grossencharacter is a character of the ideles
trivial on the diagonally imbedded number field
k, and Langlands associated an L function to
each irreducible “admissible” representation of
GLn(A) that occurs discretely in L2 of
GLn(A)/GLn(k)Z (with k imbedded diagonally
and Z equal to the center) and satisfies a con-
dition generalizing the vanishing at the cusps for
classical modular forms. Work by Tamagawa,
Godement, Jacquet-Langlands, then Godement-

Jacquet, and finally Jacquet established good
analytic behavior for these L functions.

Artin reciprocity amounts to the theorem
that the Artin L function of any 1-dimensional
Galois-group representation is an L function
obtained from GL1(A) in this way. Langlands rec-
iprocity is the conjecture that the Artin L func-
tion of any n-dimensional Galois-group repre-
sentation is an L function obtained from GLn(A)
in this way. When the number field is Q , Lang-
lands reciprocity amounts to an assertion of
what the pattern is for how an arbitrary irre-
ducible monic polynomial in one variable with
Z coefficients factors when reduced modulo a
prime. In work for which he was awarded the
Cole Prize in 1982, Langlands proved this con-
jecture for a class of 2-dimensional Galois-group
representations that could not be handled by pre-
vious methods. Tunnell extended the Langlands
theorem to handle all 2-dimensional Galois-
group representations whose image in PGL2(C)
is a subgroup of the symmetric group on four
letters.

This profound theorem of Langlands and
Tunnell, although phrased in terms of group
representations, L functions, and adeles, is ul-
timately a theorem about prime numbers. It is
the representation-theoretic cornerstone of the
work of Wiles on Fermat’s Last Theorem.

As Langlands said in [9] in 1990 about his
whole program, “...we are dealing with a tissue
of conjectures that cannot be attacked frontally.
The aesthetic tension between the immediate ap-
peal of concrete facts and problems on the one
hand and, on the other, their function as the ve-
hicle to express and reveal not so much univer-
sal laws as an entity of a different kind, of which
these laws are the very mode of being, is perhaps
more widely acknowledged in physics, where it
has long been accepted that the notions needed
to understand perceived reality may bear little
resemblance to it, than in mathematics, where
oddly enough, especially among number theo-
rists, conceptual novelty has frequently been
deprecated as a reluctance to face the concrete
and a flight from it. Developments of the last
half-century have matured us, as an examination
of Gerd Faltings’s proof of the Mordell conjec-
ture makes clear, but there is a further stage to
reach.”
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Editor’s Note: Book by Knapp and
Vogan Receives Award

The book Cohomological Inducation and
Unitary Representations, by Anthony W.
Knapp and David A. Vogan, Jr., has been se-
lected as one of the outstanding books of
1995 by the Professional/Scholarly Publish-
ing Division of the Association of American
Publishers. Published by Princeton Univer-
sity Press, the book was the winner in the
mathematics category; there are 28 subject
categories in all. A panel of judges from the
publishing industry and the industrial, med-
ical, and scientific communities chose the
winners from among 380 professional and
scholarly works nominated across the spec-
trum of science, technology, business, and
the humanities.
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