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SMPTE Proposed Standard
for File Transfer —

 

Data Transfer Protocol —
Xpress Transfer Protocol

 

1     Scope

 

This standard describes the Xpress Transfer Protocol (XTP), a high-performance transport protocol
designed to meet the needs of distributed, real-time, and multimedia systems. The protocol provides inde-
pendently selectable features such as flow control, error control, delivery priority, unicast or multicast, para-
metric addressing, and traffic specification. An integral part of the protocol is reliable 1-and-N multicast with
group reliability semantics controlled by the transmitter. XTP may operate over a network layer such as IP
or directly over a link layer such as Ethernet, FDDI, etc. This document contains necessary information on
protocol packet formats and semantics to permit a complete implementation of the protocol. 

Clause 6, "Packet structures," describes the syntax of the structures that make up XTP packets. Clause 7,
"Packet types," shows each of these packet structures as they are used in specific XTP packet types. Clause
8, "Unicast functional specification," and clause 9, “Multicast functional specification,” discuss the various
protocol algorithms. Clause 10, "Encapsulation," shows how XTP packets become the payload for various
underlying data delivery services.

 

2     Normative references

 

The following standards contain provisions which, through reference in this text, constitute provisions of this
standard. At the time of publication, the editions indicated were valid. All standards are subject to revision,
and parties to agreements based on this standard are encouraged to investigate the possibility of applying
the most recent edition of the standards indicated below.

IEEE 802, Local and Metropolitan Area Networks — IEEE Standard: Overview and Architecture.

IEEE 802.1, Local Area Networks — LAN/MAN Bridging & Management.

IEEE 802.2, Information Processing Systems — Local Area Networks — Part 2: Logical Link Control.

IEEE 802.3, Information Technology — Local and Metropolitan Area Networks — Part 3: Carrier Sense Mul-
tiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications.

IEEE 802.5, Information Technology — Local and Metropolitan Area Networks — Part 5: Token Ring Access
Method and Physical Layer Specification.

IETF RFC 791, Internet Protocol.

IETF RFC 826, Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to 48-bit
Ethernet Address for Transmission on Ethernet Hardware.

IETF RFC 1042, Standard for the Transmission of IP Datagrams over IEEE 802 Networks.
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IETF RFC 1103, Proposed Standard for the Transmission of IP Datagrams over FDDI Networks.

IETF RFC 1112, Host Extensions for IP Multicasting.

IETF RFC 1483, Multiprotocol Encapsulation over ATM Adaptation Layer 5.

IETF RFC 2236 Updates RFC 1112, Internet Group Management Protocol, Version 2. 

 

3     Definitions

 

The following terms, listed alphabetically, are used throughout this document.

 

3.1 active receiver:  

 

A multicast receiver whose control information is used by the multicast transmitter
when the transmitter runs its control algorithms.

 

3.2 application:  

 

The software running in the higher-layer client that uses XTP for communication ser-
vices.

 

3.3 allocation:  

 

The do-not-exceed sequence number that is sent by a receiver to a sender in order to
limit the flow of data.

 

3.4 association:  

 

Two or more contexts connected by an active data stream.

 

3.5 buffer:  An area of host memory, usually contiguous, dedicated to sending and receiving network
data.

3.6 concentration:  A form of multicast association where more than one host transmits to a single
receiving host.

3.7 congestion:  An overload phenomenon observed at gateways and other parts of a network where
the data rates of numerous senders combine to overrun a receiver.

3.8 connection:  A long-lived association.

3.9 context:  The set of state variables representing an instance of the use of XTP at an endpoint; one
half of an association. A context can be both a sender (on the outgoing data stream) and a receiver (on the
incoming data stream).

3.10 datagram:  Usually an unreliable, connectionless service over which unacknowledged messages,
possibly multi-packet messages, may be transmitted. The term is also used to mean the transmission of a
single message. Datagrams may be further qualified by delivery and error control semantics: they may be
acknowledged or unacknowledged depending on whether delivery confirmation is provided.

3.11 data stream:  A simplex, sequenced data flow. An association consists of two data streams, one in
each direction.

3.12 endpoint:  A host participating in an association.

3.13 end-system:  A host equipped with an XTP implementation.

3.14 end-to-end:  Inclusion of all processing for sending data from one endpoint to another endpoint.

3.15 error control:  The procedures used to detect and possibly correct lost data.

3.16 flow control:  A method of restraining the volume of information that may be sent. A receiver typically
gives a do-not-exceed byte sequence number, or allocation, to a remote host.
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3.17 go-back-N retransmission:  A retransmission technique wherein output is restarted from an earlier
point in the output stream before errors were observed at the receiver. This technique does not discriminate
between retransmission of missing or damaged packets and duplicate transmission of undamaged packets
if both kinds of packets are included in the go-back-N sequence number range.

3.18 handshake:  A message exchange between two hosts where, once a host has sent the initial mes-
sage, it repeatedly retransmits that message (optionally controlled by a timing mechanism) until a response
is obtained from the intended receiving host.

3.19 host:  A computing device that contains an XTP implementation and can participate in the exchange
of XTP packets.

3.20 link:  A direct hardware path.

3.21 MAC address:  A physical address. The term Media Access Control (MAC) is defined by IEEE 802
standards, but used here in a broader sense to mean any physical address.

3.22 MTU:  Maximum Transmission Unit, defined as the maximum size for an XTP packet within a specific
physical medium.

3.23 message:  One or more buffers of data as defined by an application program. The size is essentially
arbitrary, being limited by available memory. XTP delivers messages from sender to receiver, preserving
message boundaries as required.

3.24 multicast association:  An association in which a multicast transmitter sends to one or more multi-
cast receivers. In XTP, the data flow is simplex from the transmitter to the receivers.

3.25 multicast receiver:  A context that receives data sent on a multicast address from the multicast
transmitter. In XTP, a multicast receiver joins the multicast group either at its inception (receiving for a FIRST
packet) or by joining an in-progress multicast association (sending a JOIN packet).

3.26 multicast transmitter:  A context that transmits to a group of receivers. In XTP, this context must
maintain knowledge of the active receiver set, and resolve the control information from that set of active
receivers.

3.27 network address:  A bit string, usually representing an hierarchical number, that identifies a partic-
ular host on a network. There exist different, conflicting standards for network addressing schemes. In this
document, the term is used to denote all the collective bits needed to direct a packet to an application at an
endpoint.

3.28 physical address:  The MAC identification number for a network interface. For example, for an
Ethernet environment, the physical address is a 6-byte (48-bit) number.

3.29 rate control:  The technique of limiting the rate at which a sender is allowed to transmit data, usually
by enforcing a time delay after each packet and/or a time delay after each burst of packets. Rate control can
limit congestion in the center of a network, i.e., at gateways, as well as limiting overruns at receivers.

3.30 receiver:  The context for which particular data are incoming.

3.31 reservation mode:  A flow control behavior wherein a transmitter is output-flow-limited to the amount
of receive buffer space committed by the remote application program. The allocation used in this method of
operation is often quite different from the allocation commitment that would be made by an ordinary XTP
implementation. This mode of operation also constrains an XTP host from sending at any time that the
remote application has no available receive buffers. This form of control is demonstrated by both the NET-
BLT and VMTP protocols.
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3.32 rtt:  round-trip time, defined as the time between when a sender transmits a packet and when it
receives an acknowledgement for that packet.

3.33 selective retransmission:  An error control technique wherein only damaged or lost data are resent,
rather than. all data from a particular point in the data stream.

3.34 sender:  The context for which particular data are outgoing.

3.35 sequence number:  An identifier assigned to each byte of data in the data stream, incremented by
one for each byte starting at an initial sequence number.

3.36 transaction:  A term with many definitions; in the world of transport protocols it generally implies a
request/response handshake.

4     Notational conventions

The following terms refer to data objects within a packet: “word” indicates a 4-byte (32-bit) object, “field”
refers to an object of any size, “bitflag” denotes a 1-bit field contained within another field, and “ segment”
denotes an object consisting of one or more fields.

The bits in a field are represented left to right from most to least significant, unless otherwise stated. Like-
wise with bytes. Bits referred to by name are annotated in capital letters (e.g., RTN). A field name is given
in italic font (e.g., key field).

The number of bytes in a field is given by a number in parentheses (e.g., key(8)). When a field has variable
width, a variable such as “n” is used as the number of bytes or a factor of the number of bytes (e.g., name(n)
and name(8n)). The number of bits in a bitfield is given by a number following the field name and a colon
(e.g., pformat:5).

Occasionally a local context variable will be defined for aiding in the explanation of XTP’s functionality. These
variables, highlighted in the text in italics (e.g., saved_sync), are not intended to dictate an implementation
method.

Throughout the text, comparison of the magnitude of one unsigned integer with another follows this conven-
tion: The value of A is said to be “less than” the value of B if

(B – A – 1) < 2n – 1

where n is the number of bits in the field (note that the subtraction is an unsigned integer operation). This
handles the logic when B rolls over (overflows and returns to 0) before A does, and assumes that any two
values, when compared, will never have a distance of more than half of the number space. In this light, the
phrase “B is a higher sequence number than A” means that A is “less than” B.

5     Overview of XTP 4.0

Computer communication protocols, especially those “in the middle of the stack,” are driven by emerging
advances in physical signalling and user applications. ATM is joining FDDI and Ethernet as dominant LAN
technologies. Switched networks are making inroads where routers were prevalent. Clusters of workstations
are being treated as multicomputers, and traditional host-to-host networks are looking more like MPP inter-
connection networks. Multimedia and telepresence are blurring the distinction between television, tele-
phony, and computing. Telecommuting is a reality.

Each time the networking infrastructure changes, the appropriateness of the networking protocols is called
again into question. Yet TCP/IP has been remarkably successful through more than twenty years of Internet
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growth and change. TCP’s success, however, has not detoured researchers from critical examination of how
TCP provides transport services, and what services TCP fails to provide. Delta-t (for connection manage-
ment), NetBLT (for bulk data transfer), VMTP (for transactions), and others are the result of identifying and
fixing some deficiency in TCP. The Xpress Transport Protocol joins this list with contributions in orthogonal
protocol functions for separating paradigm from policy, separation of rate and flow control, explicit first-class
support for reliable multicast, and data delivery service independence.

5.1 Separation of paradigm and policy

At the core of XTP is a set of mechanisms whose functionality is orthogonal to one another. The most nota-
ble effect of this is that XTP clearly separates communication paradigm (datagram, virtual circuit, transac-
tion, etc.) from the error control policy employed (fully reliable though uncorrected). Further, flow and rate
control as well as error control can be tailored to the communication at hand. If desired, any of these control
procedures can be turned off.

5.2 Separation of rate and flow control

Flow control operates on end-to-end buffer space. Rate control is a producer/consumer concept that con-
siders processor speed and congestion. TCP does not provide rate control, and combats congestion with
slow-start and other heuristics. XTP provides mechanisms for shaping rate control and flow control indepen-
dently.

5.3 Explicit reliable multicast support

The transport layer multicast is a unique feature in XTP. It does not exist in other well-known transport pro-
tocols such as TCP, UDP, and TP4. The potential applications of multicast (e.g., distributed databases, dis-
tributed simulation, multimedia workstations, teleconferencing, sensor data distribution) are so numerous
that multicast is XTP’s most distinguishing and important feature. XTP’s multicast is not an attachment to
the unicast; rather, each mechanism used for unicast communications is available for multicast use as well.
The number of communicants is orthogonal to paradigm and policy.

5.4 Data delivery service independence

XTP is a transport protocol, yet with the advent of switched networks rather than routed internetworks, a
traditional network layer service may not be appropriate in every instance. XTP requires only that the under-
lying data delivery service provide framing and delivery of packets from one XTP-equipped host to another.
This could be raw MAC, IP, AAL5, or something else. XTP also employs parametric addressing, allowing
packets to be addressed with any one of several standard addressing formats.

5.5 Other features of XTP

– implicit fast connection setup for virtual circuit paradigm;

– key-based addressing lookups;

– message priority and scheduling;

– support for encapsulated and convergence protocols;

– selective retransmission and acknowledgement;

– fixed-size 64-bit aligned frame design;

– 64-bit sequence and connection identifiers;

– parameterized traffic and quality of service negotiation.
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5.6 Protocol concepts

XTP defines the mechanisms necessary for delivering user data from one end-system to one or more other
end-systems. Well-defined packet structures, containing user data or control information, are exchanged in
order to effect the user data transfer. The control information is used to provide the requested level of cor-
rectness and to assist in making the transfer efficient. Assurance of correctness is done via error control
algorithms and maintenance of a connection state machine. Flow and rate control algorithms, certain pro-
tocol modes, and traffic shaping information are used to provide the requested quality of service as effi-
ciently as possible.

The collection of information comprising the XTP state at an end-system is called a context. This information
represents one instance of an active communication between two or more XTP endpoints. A context must
be created, or instantiated, before sending or receiving XTP packets. There may be many active contexts at
an end-system, one for each active conversation.

Each context manages both an outgoing data stream and an incoming data stream. A data stream is an
arbitrary length string of sequenced bytes, where each byte is represented by a sequence number. The
aggregate of active contexts and the data streams between them is called an association. The XTP com-
munication model is shown in figure 1 (for simplicity, this figure shows a unicast association; a multicast
association is similar with more endpoints).

The establishment of an association is shown in figure 2 (again, this is a unicast association for simplicity).
A context at an end-system is initially in a quiescent state. A user awaiting the start of an association
requests that the context be placed into the listening state (1). The context now listens for an appropriate
FIRST packet. The FIRST packet is the initial packet of an association. It contains explicit addressing infor-
mation. The user must provide all of the necessary information for XTP to match an incoming FIRST packet
with the listening context.

At another end-system, a user requests the establishment of an association (2). The context handling this
user moves from a quiescent state to an active state, where it constructs a FIRST packet with explicit
addressing and service information obtained from the user. The FIRST packet is sent via the underlying data
delivery service.

Association

Contexts
Initiating
Context

Local XTP
Implementation

Context
Manager

Initiating
Endpoint

Corresponding
Context

Remote XTP
Implementation

Context
Manager

Corresponding
Endpoint

Figure 1  –   XTP communication model
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When the FIRST packet is received by the destination end-system, the address and service information in
the FIRST packet is compared against all listening contexts. If a match is found, the listening context moves
to the active state (3). From this point forward an association is established, and communication can be com-
pletely symmetric since there are two data streams, one in each direction, in an association (4). Also, no
other packet during the lifetime of the association will carry explicit addressing information. Rather, a unique
“key” is carried in each packet, which allows the packet to be mapped to the appropriate context.

Once all of the data from one user have been sent, that data stream from that user’s context can be closed.
Sentinels in the form of options bits in a packet are exchanged to gracefully close the connection. Other
forms of less graceful closings are possible by abbreviating this exchange. When both users are done, and
both data streams closed, the contexts move into the inactive state. One of the contexts will send a sentinel
that causes the association to dissolve. At this point, both contexts return to the quiescent state.

All of XTP’s packet types use a common header structure. All of the information necessary to steer the
packet’s payload to the proper point of processing is carried in the header. Much of how an XTP context
operates is controlled by bitflags concentrated in one field in the packet header. Fifteen flags are defined,
including bitflags to facilitate connection shutdown, set the control policies, and place markers in the data
stream.

XTP flow control is based on 64-bit sequence numbers and a 64-bit sliding window. XTP also provides rate
control whereby an end-system or intermediate system can specify the maximum bandwidth and burst size
it will accept on a connection. Rate control is considered a traffic shaping parameter; a traffic segment pro-
vides a means for specifying the shape of the traffic so that both end-systems and intermediate systems
can manage their resources and facilitate service quality guarantees.

Error control in XTP incorporates positive and, when appropriate, negative acknowledgement to effect
retransmission of missing or damaged data packets. Retransmission may be either go-back-N or selective
retransmission. Only data that is shown to be missing via control messages may be retransmitted. This
avoids spurious and possible congestion-causing retransmissions. The error control algorithm can also be
aggressive: a method for a quick-acting error notification is provided. The error control algorithm in multicast
is identical to the unicast algorithm, although additional sophistication is required to manage state variables
and achieve continuous streaming.

6     Packet structures

A packet is the basic unit for information exchange between the endpoints of an association. The fields
within a packet hold the information pertaining either to the state of the association or to the data being trans-
ferred. The layout, or structure, of the packet facilitates retrieval of the information held within; there is no

Send request (2)

Context A Context B

FIRST packet sent
(context goes active)

Listen request (1)
(context is listening)

Match FIRST to listening context (3)
(context goes active)

Association Established (4)

Figure 2  –   Association establishment
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inherent structure to the packet once it is handed off to the underlying data delivery service. The receiving
endpoint parses the packet only by knowing the packet structures a priori.

Each XTP packet carries a common header structure followed by a payload segment, as shown in figure 3.
There are two basic types of packets in XTP, control packets and information packets. The control packets
carry a Control Segment and are used to exchange protocol state information between contexts in an asso-
ciation. The information in control packets is not given directly to the user, but is used by the context to effect
the control algorithms. User information, including user data and protocol diagnostic messages, are carried
in the Information Segment of information packets.

This clause discusses the various segments and structures that comprise the XTP packet syntax. XTP
packet design ensures that all major segments and all 8-byte fields start on 8-byte boundaries, and all 4-
byte fields start on 4-byte boundaries. Variable length fields are avoided, and variable length segments
always have a direct method for determining length. Control information is partitioned into information that
is used in a common, error-free case (such as flow control information), and information that is not transmit-
ted as frequently (such as error control and traffic shaping information). Addressing information is not car-
ried in each XTP packet, but rather is carried only once per association.

6.1 Byte order

All protocol fields in XTP packets must be sent and received in network standard byte order, where the most
significant byte of a 32-bit field is sent first. (This is also known as “big-endian” byte order.) All header, con-
trol, addressing, and traffic information is affected by this rule; only user data is not. Systems whose native
byte order representation is not the same as the network standard byte order must permute the bytes of
protocol fields after reception and before transmission.

6.2 Header format

All XTP packets use a fixed header syntax consisting of the following fields: key, cmd (command), dlen (data
length), check (checksum), sort (priority), sync (synchronizing number), and seq (sequence number). The
key field steers the packet to the proper destination context. The cmd field dictates how the packet is to be
processed. The dlen and seq fields identify this packet’s contents with respect to the data stream. The check
and sync fields are used to determine the validity of the packet, and the sort field orders the act of parsing
the packet among all contending activities. The header and its fields are shown in figure 4.

6.2.1 Key field

The key field associates a packet with a context. It is similar to the connection or transaction identifier found
in most protocols. The lifetime of a key value is the same as the lifetime of the associated context: a key is
considered “active” while its context is in any state but quiescence, and “inactive” when its context is quies-
cent. The key field is always interpreted and must contain a meaningful value in all packet types.

The key field is 64 bits wide. As shown in figure 4, it contains a 63-bit key value and reserves the most sig-
nificant bit (RTN) as a flag. The RTN bit directs the interpretation of a key in received packets: if the RTN bit
is not set, then the key identifies a context on the end-system sending the packet containing the key; if the
RTN bit is set, then it identifies a context at the destination end-system where the packet containing the key
is received. A key field with its RTN bit set is called a return key.

When a context is instantiated, a key value is assigned to that context such that the RTN bit is cleared and
the 63-bit value is unique within that host’s XTP implementation. When the context sends a packet, it fills in
the key field of the packet header with its key value so that the receiver of the packet can, along with other
information, determine which context sent the packet and infer, therefore, which context is to receive the
packet (see 8.2.2, “Full context lookup”). The receiving context notes the packet’s key value and uses it, with
the RTN bit set, in all of its outgoing packets. Such a packet, when received, can be mapped directly to the
appropriate context because that key value was generated for that context, and is therefore unique within
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btag (8)
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the host (see 8.2.3, “Abbreviated context lookup”). This is illustrated in figure 5, where K is the key value
generated at Context A. The packets sent from Context B use the return key value K'.

A key value of zero is illegal.

NOTE – Implementation: Key aliasing is a condition that occurs when a new use of a key value, arriving in a packet, 
matches an old use of the key at the receiving host. The packet is mistakenly given to the wrong context. To avoid 
this and aid with the mapping and uniqueness properties of key values, the key can be further divided into an 
instance part and an index part, as shown in figure 4. The number of bits in each part is determined by the imple-
mentation, subject to the number of contexts supported. The index value is used to select the context. The instance 
value validates active index values and discriminates against inactive index values. The discrimination method 
depends on associating a current instance value with each active context. When a return key is received in a packet 
and the index locates the context, the two instance values must be compared — one in the key and one associated 
with the context. The key is valid only if the two instance values match.

When a key is activated along with an associated context, the instance value must be incremented so that the new 
key and its context can be distinguished from previous uses of the same index. As key values and contexts are 
reused, the instance field will eventually wrap around to reuse instance values. The time required for this to occur is 
called the wrap time for instances. In order to avoid key aliasing, the minimum wrap time must be greater than the 
maximum time that any end-system might keep a context active after a network failure or termination of an associ-
ation. The maximum holding time for a key is bounded by twice the length of the CTIMER interval (see 8.3, “Timers”).
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Figure 4  –  Header fields
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The minimum wrap time for an instance field is determined by three factors: I (the number of bits in the instance 
field), N (the number of contexts available in an implementation), and R (the rate at which contexts are used, in con-
texts per seconds, by the system and its applications). An expression for minimum wrap time is:

To avoid key aliasing, the implementor must ensure that the CTIMER interval is much smaller than one-half of the 
value of the above expression. (The expression assumes that quiescent contexts are activated in FIFO order. A sim-
ple free list that operates in LIFO, or stack, order will not suffice. Inactive contexts must be placed at one end of a 
queue, and removed from the other end of the queue when activated.)

For example, assume that there are 32 bits given to the instance field, but there is only one context in the implemen-
tation. Also assume that the rate of context use is one per millisecond, or 1000 per second. The formula above yields 
approximately 222 seconds as the minimum wrap time, so the CTIMER interval must be much less than 221, or 2 
million, seconds. As a practical matter, however, the CTIMER should be set in the one to several hour range.

6.2.2 Command field

The 32-bit cmd field carries the options set for this packet, the version of the protocol that generated this
packet, and the format of the packet. The syntax of the cmd field is shown in figure 4. The cmd field must
always contain meaningful values for all its subfields and bits.

6.2.2.1 Command options

The bitflags in the options field are given in table 1. These bits select XTP operating modes and mecha-
nisms. The logic convention is positive: a function is enabled if the corresponding bit is set (value is 1), it is
disabled if the bit is cleared (value is 0). Zero or more bits may be set in each header.

6.2.2.1.1 NOCHECK

When set, this bit indicates that the checksum is calculated over the header fields only, and the rest of the
packet is not summed. When cleared, the checksum is calculated over the whole packet. The check field in
the header contains the result of the checksum (see 6.2.4, “Checksum field”).

6.2.2.1.2 EDGE

When a packet is received, the value of the EDGE bit is compared with the value of the EDGE bit from the
most recently received packet. If their values differ, a control packet is issued in response. If they are the
same, nothing is done. The sender can toggle this bit during a stream of packets to request control packets
without using the SREQ or DREQ mechanisms. This status request is not guarded by a timer, in contrast
with the case when SREQ is used.

6.2.2.1.3 NOERR

When set, this mode bit informs the receiver that the sender will not retransmit data, and directs the receiver
to disable error correction processing (see 8.6, “Error control”). This is called “no-error mode.” When status
is requested, the receiver must always acknowledge the highest received sequence number. Setting this bit
does not prevent the receiver from sending control packets for other reasons. This bit takes precedence over
the FASTNAK bit; even if both bits are set, error control is disabled.

6.2.2.1.4 MULTI

When set, this bit indicates use of multicast mode (see clause 9, “Multicast functional specification”). The
value of this bit must be the same in all packets over the lifetime of the association.

6.2.2.1.5 RES

When set, this bit enables reservation mode. By setting this bit, the sender indicates to the receiver that the
alloc values provided by the receiver in its control packets must represent actual client buffer space avail-

2I( )N
R
----
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able, not XTP internal buffer space (see 6.3.1.2, “Allocation field”). The purpose of reservation mode is to
avoid overflowing XTP buffers during bulk transfers.

6.2.2.1.6 SORT

When set, this bit indicates that the value in the sort field of the header should be interpreted and used for
sorting/prioritizing the packet (see 6.2.5, “Sort field”). This is called “sort mode.” When this bit is cleared, the
sort field must contain the value zero.

6.2.2.1.7 NOFLOW

When set, this mode bit indicates that the sender does not observe flow control restrictions (see 8.4, “Flow
control”). Specifically, the allocation limit imposed by the receiver (in the alloc field of control packets) does
not constrain the sender.

6.2.2.1.8 FASTNAK

This bit indicates that the receiver should provide aggressive error notification (or “fast negative acknowl-
edgment;” see 8.6.2, “Acknowledgments and retransmission”). The FASTNAK bit should be set by a sender
only when the protocol layers below XTP do not reorder packets excessively. If a receiver detects an out-of-

Table 1  –  Header options bits

Bit Mask Description
Potential 
change Expectation

0x800000 not used, must be cleared

NOCHECK 0x400000 Disable checksum function Per packet Per context

EDGE 0x200000 Edge-triggered status requests Per packet

NOERR 0x100000 Disable error control Per packet Per context

MULTI 0x080000 Multicast mode Per association

RES 0x040000 Reservation mode Per packet Per context

SORT 0x020000 Enable sorting Per packet Per context

NOFLOW 0x010000 Disable flow control Per packet Per context

FASTNAK 0x008000 Enable aggressive error control Per packet Per context

SREQ 0x004000 Status requested Per packet

DREQ 0x002000 Delivery status requested Per packet

RCLOSE 0x001000 Reader closed Per packet

WCLOSE 0x000800 Writer closing Per packet

EOM 0x000400 End of message Per packet

END 0x000200 End of association Once

BTAG 0x000100 Beginning data tag Per packet
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order packet and the FASTNAK bit is set, then the receiver immediately returns an ECNTL packet to the
sender to indicate the error. The FASTNAK bit has no effect when the NOERR bit is set.

6.2.2.1.9 SREQ

When set, the receiver must respond immediately with a control packet. The SREQ bit is set by an XTP
sender according to its output acknowledgement policy or when responses are needed to recover from
errors.

6.2.2.1.10 DREQ

When set in a data-bearing packet, the receiver must send a control packet after all enqueued data, up to
and including any in this packet, have been delivered to the higher-layer application. When set in a control
packet, this bit indicates that the sender requests that the receiver send a control packet after all data with
sequence number less than the value in the seq field of this packet have been delivered to the higher-layer
application.

6.2.2.1.11 WCLOSE and RCLOSE

These bits are the basis for disconnect handshakes carried out by the close state machines (see 8.2.7,
“Association termination”). The WCLOSE bit indicates that no more data will be written to the outgoing data
stream. The RCLOSE bit indicates that all bytes written to the incoming stream have been received with
respect to the error control policy in use.

6.2.2.1.12 EOM

This bit is used to delimit message boundaries in a data stream; when set, this bit denotes the end of a mes-
sage. A data-bearing packet containing EOM carries the trailing bytes of a message. Control packets must
not carry an EOM bit. The EOM bit is not manipulated by XTP, nor does XTP create or remove EOM bits
from a data stream. The bit is asserted by a sending application through its service interface and delivered
to the receiving application by the receiving XTP.

6.2.2.1.13 END

When set, this bit indicates that the sending context is being released. It is used in the last packet of a closing
handshake and also when an association is aborted (see 8.2.7, “Association termination”).

6.2.2.1.14 BTAG

When set, this bit indicates that the first eight bytes of the Data Segment within the Information Segment
become the btag field, used to contain tag information for the higher-layer application (see 6.4.2.2, “Begin-
ning tag field”). The BTAG bit is meaningful only in data-bearing packets — it must be cleared in all other
packets. Like EOM, BTAG is not manipulated by XTP.

An XTP transmitter controls the settings of options field in every packet. Some bitflags must have the same
value for the lifetime of a context. Others may change from packet to packet. The potential for change for
each bit is indicated in the Potential Change column of table 1. Per packet means that the bit value could be
different on every packet. Per association means that all contexts in an association must set the bit the same
way. For example, if one context is in multicast mode, the other context(s) must also be in multicast mode.
Once means that the bit may be set exactly once in the lifetime of a context (unless the bit is included in a
retransmitted packet).

Even though some bits may change on a packet-by-packet basis, it is expected that they would retain the
same setting for the duration of the context. Bits expected to remain constant even though they could
change are indicated in the Expectation column of table 1. Per context in this column indicates this expec-
tation.
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The bits NOERR, MULTI, RES, SORT, and NOFLOW are called “mode bits”; changing mode bits during the
association (except for MULTI, which is not allowed to change) can cause unpredictable behavior unless
there is a synchronization of the contexts prior to changing the mode bits (see 8.2.6, “Changing modes”).

6.2.2.2 Packet type field

The least-significant byte of the cmd field is called the ptype field. Within this byte, bits 0 through 4, called
the pformat field, identify the XTP packet type. Bits 5 through 7 indicate the XTP version (ver field). The pfor-
mat field is always interpreted and must contain a meaningful value. The ver field is also always interpreted
and, in XTP 4.0, must be set to binary 001.

The pformat values are enumerated in table 2. FIRST, DATA, and DIAG packets use an Information Seg-
ment. The FIRST packet (see 7.1) is the initial packet of an association and contains an Address Segment
(6.4.1), a Traffic Specifier (6.3.4), and optionally a Data Segment (6.4.2). DATA packets (7.2) are used for
subsequent data transfers, and contain only the Data Segment. These are the two packet types responsible
for user data transfer.

CNTL (see 7.3), ECNTL (7.4), TCNTL (7.5) packets, and JCNTL (7.6) packets use a Control Segment. The
CNTL packet conveys control information such as flow control window values through the Common Control
segment (6.3.1). The ECNTL packet additionally conveys error control information through its Error Control
segment (6.3.2). The TCNTL packet is used to negotiate a traffic specification through its Traffic Control seg-
ment (6.3.3). The JCNTL packet is used to establish multicast associations between a transmitter and mul-
tiple receiver contexts. These are the four packet types responsible for state information exchanges between
contexts.

The DIAG packet (7.7) uses a Diagnostic Segment (6.4.3) to convey diagnostic information.

NOTE – Design: Control packets have odd pformat values and Information packets have even pformat values. This 
is to allow an XTP engine to switch on the least significant bit for steering the packet into the control information 
processors or the user data processors.

6.2.3 Data length field

The dlen field specifies the number of bytes immediately following the header, that is, the number of bytes
in the payload segment. Since zero-length DATA packets are not allowed, the dlen field will always have a
non-zero value.

Table 2  –  Types of XTP packets

pformat Decimal Hex Definition

DATA 0 0x00 user data packet

CNTL 1 0x01 state exchange control packet

FIRST 2 0x02 initial packet of an association

ECNTL 3 0x03 error control packet

TCNTL 5 0x05 traffic control packet

JOIN 6 0x06 <obsolete>

JCNTL 7 0x07 multicast control packet

DIAG 8 0x08 diagnostic packet
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6.2.4 Checksum field

The check field contains the result of the XTP check function (see annex A, "Check function," for the check
function algorithm). If the NOCHECK bit is set, the check field contains the checksum over the packet
header and nothing more. If the NOCHECK bit is cleared, the check field contains the checksum over the
whole packet, including the header and the payload segment.

6.2.5 Sort field

The sort field is intended to provide an expedited service for selected packets. The sort field is interpreted
only when the SORT bit in the header is set. When the SORT bit is cleared, the sort field must contain zero.

As the XTP subsystem scans all of the active contexts on the transmitter side, it gives preference to contexts
that have priority data to transmit versus those that do not. The contexts with priority traffic emit packets
whose SORT bit is set and whose sort field is meaningful; those without priority data emit packets whose
SORT bit is not set and whose sort field contains the value zero. On the receiver side, data are delivered to
clients in an order consistent with the priority of the incoming data.

The sort field is an unsigned 16-bit number that specifies an integer ordering. A sort value of zero indicates
the lowest priority, while increasingly positive sort values represent increasingly higher levels of priority.

The XTP implementation must serve all active contexts in priority order. When there is an opportunity to
transmit, the packet with the highest priority is selected, consistent with the rate and flow control restrictions
of each context. This selection procedure is repeated at each transmission opportunity. Contexts not oper-
ating in sort mode (i.e., their packets have the SORT bit cleared) are serviced in FIFO order after all contexts
that are operating in the sort mode. 

On the receiver side, sort mode operation implies that, of all packets received, enqueued, and awaiting pro-
cessing, the next packet to be processed will be the one with the highest priority. Packets with the SORT bit
cleared are processed in FIFO order after packets whose SORT bit is set.

More sophisticated queueing policies, such as preemptive or destructive preemptive queueing, may be used
to implement the sort mode. An implementation is responsible for stating input and output queue behavior,
and specifying the maximum time bounds for preemption for both input processing and output processing.

NOTE – Implementation: Deadline-driven processing can be emulated by quantizing the deadline into a 16-bit value, 
inverting the bits of the 16-bit value, then using this as the sort value.

6.2.6 Synchronizing handshake field

The 32-bit sync field provides the basis for the synchronizing handshake (see 8.6.3, “Synchronizing hand-
shake,” and 9.8.2, “Synchronizing handshake”). Each context keeps a record of the last sent sync value in
a variable saved_sync. When a packet is sent with its SREQ bit set, the saved_sync value is incremented
by one, and this new saved_sync value is placed into the sync field of the outgoing packet. The rules for a
sender are as follows:

– Rule 1: The value of the sync field in outgoing packets increases only when the SREQ bit is set in an
outgoing packet, and remains constant at the most recently transmitted value for all other packets.

– Rule 2: Retransmitted packets must also abide by Rule 1; the sync values used are not the ones
originally transmitted, but values generated under Rule 1.

An XTP receiver saves the highest received sync values into a local variable rcvd_sync. The value of
rcvd_sync is later placed into the echo field (see 6.3.1.3, “Synchronizing handshake echo field”) of each out-
going control packet. The rules for a receiver are as follows: 



Proposed SMPTE Standard — XTP (draft 3)

Page 16 of 100 pages

– Rule 1: The local context variable rcvd_sync is initialized with the value of the sync field from the first
packet received for this association.

– Rule 2: The rcvd_sync value is placed into the echo field of all outgoing control packets.

When a control packet is received, the sync field from the control packet is compared to the value in
rcvd_sync; if the control packet contains a sync value that is greater than or equal to the rcvd_sync value,
the control packet is processed normally. If not, the control packet has information older than information
received in previous control packets. In this case, the SREQ and DREQ bits should be responded to if set,
but no other processing should be done on the control packet.

If the WTIMER expires, indicating a status request (sent SREQ bit) has not been answered, the context
enters the synchronizing handshake.

6.2.7 Sequence number field

The seq field is an unsigned 64-bit quantity representing a sequence number for the outgoing data stream.
A sequence number is associated with every byte of data in that stream. The seq field is meaningful and
interpreted in all packet types with one exception: in the FIRST packet, the seq field is used to convey an
initial allocation value (advertised receive window) for the return data stream.

For DATA packets, the value in the seq field is the sequence number of the first meaningful byte of the Infor-
mation Segment. The range of sequence numbers representing the data in a DATA packet begins with seq
and extends to seq + dlen - 1.

The value of seq in control packets is the next sequence number to be sent on the outgoing data stream.
Since control packets do not carry data, no sequence numbers are consumed by a control packet’s payload.

Associations always begin both data streams at sequence number 0. Since a sequence number is not nec-
essary to identify the first byte of the outgoing data stream (it is always zero), the seq field in a FIRST packet
is used to indicate the do-not-exceed sequence number for the incoming data stream of the sender of the
FIRST packet. This is the initial allocation value for the return data stream; subsequent control packets carry
updated allocation information thereafter.

NOTE – Example: A host intends to send a 300-byte message (this byte count includes user data and address infor-
mation). Assume that the message is transmitted as three packets, as shown in figure 6. The seq field in the FIRST 
packet carries the initial return allocation for A’s incoming data stream. The first DATA packet’s seq field carries the 
value 100 since the FIRST packet consumed 100 bytes of sequence space. The sequence number of the last byte 
of this DATA packet is 199, so the seq field in the CNTL packet contains the next sequence number to be used, which 
is 200. The next DATA packet, therefore, also carries 200 in the seq field.

The seq field of the retransmitted DATA packet again contains the value 100, since this identifies the data within. 
However, the CNTL packet following the retransmission carries 300 in the seq field, since this is the next new 
sequence number to be sent.

The seq field of a DIAG packet must contain the seq value of the incoming packet that caused the error that
the DIAG packet is reporting. If the DIAG packet is generated for some reason other than an error in an
incoming packet, the seq field must contain the value zero.

6.3 Control Segment

A Control Segment reports the state of the context that sent it. XTP packets containing a Control Segment
as their payload are referred to as control packets. Control packets are used to exchange state information
between XTP endpoints.

The Control Segment is included in CNTL, ECNTL, TCNTL, and JCNTL packets. These four packet types
correspond to the four forms of the Control Segment as shown in figure 3. A CNTL packet contains a Com-
mon Control segment with information most commonly needed, such as flow control information. The
ECNTL contains an Error Control segment, which contains all of the fields of the Common Control segment
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but also holds error control information.The JCNTL packet contains an Address Segment and a Traffic Con-
trol segment, and is used to establish multicast associations. The TCNTL packet contains a Traffic Control
segment, and is used to negotiate traffic specifications.

NOTE – Design and implementation: Control packets are split into these four types to avoid sending unnecessary 
information — only when errors occur is an ECNTL packet used, and only when traffic specification needs to be 
negotiated is a TCNTL packet used. If all of the error control information were in a common CNTL packet, the error 
control fields would have to be parsed and checked for each CNTL packet, even if no error had occurred. Further, 
the packet type implies what type of processing will be required, so an XTP implementation can steer the packet to 
the proper processing elements as soon as it knows what packet types it has received.

6.3.1 Common Control segment

The format of a Common Control segment is shown in figure 7. These three fields represent the state infor-
mation for which a control packet is most commonly needed. The fields in this segment are common to all
three control packet types. The first two fields, rseq and alloc, are flow control parameters and together
define the flow control window. The third field, echo, is used to identify a particular control packet as a
response to a packet sent with the SREQ bit set.

6.3.1.1 Received sequence number field

The rseq field is interpreted and must contain a meaningful value in all control packets. The rseq field holds
the sequence number of the next in-sequence byte expected on this data stream, so it is one greater than
the highest contiguously received data byte. The rseq value serves as the lower edge of the flow control
window and, consequently, acknowledges all data whose sequence numbers are less than the value of rseq.
Whenever error processing has been turned off (the last received packet had its NOERR bit set), the value

Context A Context B

FIRST (seq = initial

DATA (seq = 100,

DATA (seq = 200,

CNTL (seq = 300)

return allocation,
dlen = 100)

dlen = 100)

dlen = 100)

CNTL (seq = 300)

request to retransmit

lost

DATA (seq = 100,
dlen = 100)

CNTL (seq = 200)

Figure 6  –  Use of the seq field



Proposed SMPTE Standard — XTP (draft 3)

Page 18 of 100 pages

of rseq is one past the highest sequence number ever received on the data stream. For a context in which
no data have as yet been received, rseq is the starting sequence number for the data stream, which is zero.

NOTE – Example: Suppose a series of seven 100-byte DATA packets with seq fields of 100 through 700 are sent to 
a receiver that sees packets with seq fields 100, 200, 300, 600, and 700, but packets with seq values of 400 and 500 
are not received.

If NOERR is cleared, any control packets generated by the receiving context would have the value 400 in the rseq 
field. This means that bytes up to and including 399 were received in order.

If NOERR is set, any control packets generated by the receiving context would have the value 800 in the rseq field.

6.3.1.2 Allocation field

The alloc field is interpreted when flow control is enabled. The value of the alloc field is a sequence number
that limits the amount of data a sender may transmit; a sender may send data with sequence numbers up
to, but not including, the sequence number in alloc. The alloc value represents the amount of data the
receiver is willing to accept, which may or may not correspond to internal buffer space of the receiving XTP
machine. When the RES bit is set, however, the alloc value represents the buffer space reserved for this
association.

Sequence-based flow control is disabled by NOFLOW mode. The alloc field of received control packets is
ignored by a sender in NOFLOW mode.

6.3.1.3 Synchronizing handshake echo field

The echo field is valid in all control packets. It is used to match a control packet with the status request (sent
SREQ bit) that may have caused the control packet to be generated. The value of the echo field is the high-
est seen sync value from all incoming packets (see 6.2.6, “Synchronizing handshake field”). The highest
sync value yet seen is held in a context variable called rcvd_sync; when a control packet is generated, the
value of rcvd_sync is placed into the echo field of the control packet. Thus the value in the echo field of an
incoming control packet indicates the highest seen sync value at the time of its transmission.

If the echo value is less than the saved_sync value, the control packet is not a response to the most recent
status request. If the echo value is equal to the saved_sync value, the information in the incoming control
packet is no older than the time at which last status request was generated. Therefore, the echo value is
useful for:

– taking round-trip time samples;

– stopping a synchronizing handshake, if one is in progress;

– aggregating control information from the set of multicast receivers.

rseq (8) alloc (8) echo (4)

Figure 7  –  Common Control segment fields

Control Segment

Common Control
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Round-trip time estimates can be collected if the current time is saved when a packet with the SREQ bit set
is sent (and its sync value is recorded in saved_sync). This saved time is subtracted from the current time
when a control packet arrives whose echo value is equal to the saved_sync value. (Note that this only works
if the control packet is in response to an SREQ.) The difference in the times is a round-trip time observation.
The value used to load the WTIMER is a value derived by smoothing observations of round-trip times.

NOTE – Implementation: Implementors may use whatever smoothing functions they wish. The following is from Van 
Jacobson. For each observation of the round-trip time rtt,

SRTT is the smoothed round trip time, and RTTV is the round-trip time variance. The value loaded into WTIMER is

The synchronizing handshake is a procedure used to cause the endpoints of an association to synchronize
their state information. The procedures for interpreting echo and sync field values are specified in 8.6.3 and
9.8.2 of this document.

In a multicast association, control information coming from multiple receivers must be resolved by the trans-
mitter. Since control packets can arrive at any time and out of order, the age of the control information must
be ascertained. The echo field of an incoming control packet allows a multicast transmitter to determine the
relative age of the control information.

6.3.2 Error Control segment

The format of the Error Control segment is shown in figure 8. An Error Control segment includes all of the
fields of the Common Control segment with two additional fields, nspan and spans. These fields specify
what data have been lost by listing the spans of data that have been received. The Error Control segment
is used in the ECNTL packet.

6.3.2.1 Number of spans field

The nspan field specifies the number of spans in the ECNTL packet. Since an ECNTL packet indicates that
data are missing, the nspan field will have a value of at least one.

SRTT = SRTT + (rtt – SRTT) / 8

RTTV = RTTV + (abs(rtt – SRTT) – RTTV) / 4

WTIMER SRTT 2RTTV+←

nspan (4) spans (16n)

Figure 8  –  Error Control segment fields

Control Segment

Error Control

rseq (8) alloc (8) echo (4)

spans1,a (8) spans1,b (8) spansnspan,a (8) spansnspan,b (8)



Proposed SMPTE Standard — XTP (draft 3)

Page 20 of 100 pages

6.3.2.2 Spans field

The spans field consists of pairs of sequence numbers defining unbroken sequences (spans) of received
data within a data stream. The number of pairs is indicated by the nspan field.

The pairs of sequence numbers in the spans field indicate ranges of received data that occur after the
sequence number in the rseq field. Identifying the ranges of received bytes makes it possible for the data
stream sender to calculate the gaps that exist at the receiving host. Each pair (spansn,a, spansn,b) within
spans describes an intact range (one span) of received sequence numbers that is bordered on one or both
sides by missing data (a gap). The first number in a pair, spansn,a, is the lowest sequence number for the
span; the second number, spansn,b, is one greater than the highest sequence number for that span. The
second sequence number must not be less than the first. The first spans pair must describe the span with
the lowest sequence numbers, subsequent pairs have increasing sequence numbers. The pairs themselves
must be in order so that they describe sequentially ordered spans. An XTP receiver is allowed to keep record
of fewer spans than actually occur for implementation reasons.

NOTE – Example: The construction of a spans field for a data stream consisting of eleven 100-byte packets with seq 
fields of 0, 100, 200, etc., is illustrated in figure 9. The receiver sees packets with seq field values 0, 100, 200, 300, 
600, 700, 900, 1000. Since bytes 0 to 399 are a contiguous sequence, the receiver fills the rseq field of an ECNTL 
packet with 400. The receiver then describes all other intact spans using the spans field. Here, two spans exist, so 
the value in the nspan field would be 2 and the pairs within its spans field are (600, 800) followed by (900, 1100). 
This combination of rseq, nspan, and spans makes it possible for the data stream’s sender to calculate that 
sequence numbers 400 through 599 and 800 through 899 should be retransmitted.

An XTP transmitter is allowed to ignore some of the spans information, effecting a go-back-N retransmission
policy by retransmitting all data starting from rseq. An XTP receiver may likewise simplify its retransmission
request by setting nspan to one and placing the highest sequence number yet seen in both spans1,a and
spans1,b.

NOTE – Example: For go-back-N retransmission, the receiver in the previous example would set nspan to 1 and 
spans1 to (1100, 1100).

6.3.3 Traffic Control segment

The format for the Traffic Control segment is given in figure 10. A Traffic Control segment includes all of the
fields of the Common Control segment with two additional fields and a Traffic Specifier segment. The two
additional fields are rsvd (reserved) and xkey (the exchange key field). The Traffic Specifier segment con-
tains format-specific fields that provide traffic shaping parameters.

The TCNTL packet carries the Traffic Control segment as its payload. The TCNTL packet is used to negotiate
traffic specification, which usually happens at or near the beginning of the association. The xkey field is
included in the Traffic Control segment since the key exchange, discussed in 8.2.4, “Key exchange,” also
usually happens at or near the beginning of the association.

0 … 100 … 200 … 300 … 399 400 … 599 800 … 899 900 … 1099

rseq = 400

gap span spangap

[600, 800]
first span

[900, 1100]
second span

in spans in spans

600 … 799

Figure 9  –  Spans in a data stream
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6.3.3.1 The reserved field

The rsvd field is reserved and must be zero for all TCNTL packets.

6.3.3.2 Exchange key field

The xkey field is interpreted in all TCNTL packets. The value of the xkey field must be the return key value
(i.e., the RTN bit must be set) for the context sending the packet. The value in the xkey field supports the
key exchange mechanism described in 8.2.4, “Key exchange.”

6.3.4 Traffic Specifier segment

The Traffic Specifier segment, shown in figure 11, contains the traffic specification fields for the FIRST and
TCNTL packets. These fields are used to negotiate traffic shaping information. (A Traffic Specifier segment
is used in a FIRST packet to make the “offer;” the “reply” to the offer comes in the Traffic TCNTL packet.
Also, once established, the endpoints of the association can use TCNTL packets to renegotiate the traffic
specification.)

The length of the Traffic Specifier segment is given in the tlen field. The service field indicates the type of
traffic expected for this association. The Traffic Specifier syntax is determined by the tformat field. Two traffic
specifications are mandatory, a null traffic specifier, and a rate control traffic specifier (see figure 12). 

6.3.4.1 Traffic segment length field

The tlen field contains the total length of the Traffic Specifier, including the 4-byte descriptor. This Traffic
Specifier must be a multiple of eight bytes, so the minimum value for tlen is eight.

6.3.4.2 Service field

The service field is used to indicate the type of transport service used for the duration of this service instan-
tiation. This information is provided by the application and passed along in the FIRST packet to the destina-
tion endpoint. The service field is transmitted to the receiving context, which uses the value to select an
interface for the duration of the association. The defined values for service are enumerated in table 3.

rsvd (4) xkey (8)

Figure 10  –  Traffic Control segment fields

Traffic Specifier

Control Segment

Traffic Control

rseq (8) alloc (8) echo (4)

tformat (1)tlen (2) traffic (4 + 8n)service (1)

Figure 11  –  The Traffic Specifier segment fields

Traffic Specifier
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The service value zero is used by a listening context to accept any incoming service type, and by a FIRST
packet to indicate that the service to be used on this association is unspecified.

Service profile definitions are given in annex C, "Service profile definitions." Each service profile defines the
expected values of the options bits in the XTP packets used for that service type, as well as the expected
packet exchange sequences. An implementation claiming to conform to a service defined in annex C must
adhere to the packet formats and sequences defined there. The service types defined here are listed
because they provide definite hints to the sender and receiver.

It is expected that services in addition to those defined in annex C will be defined. To ensure interoperability
among services, the service values will be assigned by the XTP Forum. Until such assignment is made,
other modes of operation should be initiated with service value zero.

6.3.4.3 Traffic field

The traffic field format depends on the value of the tformat field. There are two mandatory specifications,
shown in figure 12. The first specification, tformat 0x00, is used when no traffic shaping parameters are nec-
essary or desired. This may be the case if the underlying data delivery service has no admission policies,
and transport level rate control is not desired.

The second specification, tformat 0x01, is used to convey rate control and other information. The maxdata
field conveys the maximum Information Segment size that the sender expects to transmit during the lifetime

Table 3  –  Service type values

Service Type of service

Decimal Hex

0 0x00 Unspecified

1 0x01 Traditional Unacknowledged Datagram Service

2 0x02 Acknowledged Datagram Service

3 0x03 Transaction Service

4 0x04 Traditional Reliable Unicast Stream Service

5 0x05 Unacknowledged Multicast Stream Service

6 0x06 Reliable Multicast Stream Service

traffic (4 + 8n)

inrate (4) inburst (4)

null (4)

maxdata (4) outrate (4) outburst (4)

tformat 0x00

tformat 0x01

Figure 12  –  Traffic field
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of the association. The inrate and inburst fields are rate control parameters for the incoming data stream.
The outrate and outburst fields are the (suggested) rate control parameters for the outgoing data stream.

Additional traffic field formats are assigned by the XTP Forum, see annex D, "Additional traffic specifier for-
mats."

6.4 Information segment

The Information Segment encapsulates user and other protocol and diagnostic information. XTP packets
containing an Information Segment as their payload segment are called information packets. DATA, FIRST,
and DIAG packets are information packets corresponding to the possibilities in figure 3. The first two types
(DATA and FIRST) can contain higher-layer (user) data. These are referred to as data-bearing packets. The
third type (DIAG) contains transport layer messages only.

There are four segments used in information packets, the Data Segment, the Address Segment, the Traffic
Specifier, and the Diagnostic Segment. These segments are used in various combinations to construct the
several information packets. The Address Segment, Data Segment, and Diagnostic Segment are discussed
below in 6.4.1, 6.4.2, and 6.4.3; the Traffic Specifier has already been defined in 6.3.4, “Traffic Specifier seg-
ment.”

Information Segments of DATA and FIRST packets always consume sequence space; those of DIAG pack-
ets do not.

6.4.1 Address Segment

The Address Segment format is shown in figure 13. The Address Segment contains destination and source
addressing information.

Instead of defining a single XTP-specific addressing scheme, XTP provides parametric addressing where
one of several formats can be used to express the source and destination addresses. These formats closely
resemble the addressing structures used in several standard network protocols. The intent is to free XTP
from the need for an address administration authority and an allocation policy, and to minimize the differ-
ences between an XTP service interface and a service interface to one of these protocols.

The Address Segment is carried in FIRST and JCNTL packets only. These packets are used to initiate or
join an association; once the association has been established or joined, the addressing information is no
longer explicitly carried by packets in subsequent packet exchanges.

The addressing information carried in an Address Segment can be thought of as a pattern. Listening con-
texts submit filters that mask this pattern. A comparison of the Address Segment from a FIRST or JCNTL
packet and the filter determines if the packet can be accepted by the context that submitted the filter. This
operation is independent of the addressing function for the underlying data delivery service, although the
addressing information used is often the same.

An Address Segment consists of a 4-byte descriptor followed by a variable-length address field. The aformat
field specifies the format of the address, and the alen field specifies the segment’s total length.

aformat (1)alen (2) adomain (1)

Address Segment

Figure 13  –  Address Segment fields

address (4 + 8n)
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6.4.1.1 Address format field

The aformat field identifies the address syntax according to table 4. Address format values 0 through 127
are reserved for use by the XTP Forum. Values for aformat in the range of 128 to 255 are for use by the
implementor and may be defined for local installations of XTP. There is no guarantee that formats in this
range will be compatible across implementations.

NOTE – Design: The address formats given in table 4 are mostly network layer addresses which include host iden-
tifiers. Including the host identifier is not strictly necessary for a transport layer protocol, but in this case it avoids the 
need for a TCP-style pseudo-header while calculating the checksum. As long as the destination host identifier is 
meaningful in an Address Segment, the receiving host can check that the destination host identifier from the FIRST 
packet does, indeed, match this host’s identifier. Note that this protection is lost if NOCHECK is on in a FIRST packet.

6.4.1.2 Address domain field

The adomain field is an address demultiplexer. Some address formats are actually used by two or more
addressing domains. The adomain value disambiguates which address domain is being used.

NOTE – Example: UDP, TCP, XTP, and any other protocol recognized by IP (has a protocol number) use the same 
address format, but the port numbers are allocated from separate port spaces. Port 155 in UDP is different from port 
155 in TCP. To disambiguate them, the adomain field would carry the address format-specific demultiplexer. In this 
case, adomain would be 6 for TCP, 17 for UDP, and 36 for XTP.

6.4.1.3 Address Segment length field

The alen field specifies the length of the whole Address Segment, including the 4-byte descriptor. The
Address Segment must be a multiple of eight bytes, so the minimum value for alen is eight bytes.

6.4.1.4 Address field

The address field holds the addresses for the source and destination endpoints. The address field syntax is
determined by the aformat field; the list of possibilities are given in table 4.

NOTE – Implementation: Often there is a mapping from the address format used in the Address Segment to the 
addressing information needed by the underlying data delivery service. For example, if XTP is running over IP, and 
aformat 0x01 (Internet Protocol Address Format) is used, the mapping is trivial. If XTP is running directly over Ether-
net, and aformat 0x01 is used, the mapping may require an ARP lookup.

Table 4  –  Address formats

aformat Address syntax

Decimal Hex 

0 0x00 Null Address

1 0x01 Internet Protocol Address

2 0x02 ISO Connectionless Network Layer Protocol Address

3 0x03 Xerox Network System Address

4 0x04 IPX Address

5 0x05 Local Address

6 0x06 Internet Protocol version 6 Address
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6.4.1.4.1 Null address format

The Null Address Format, aformat 0x00, is designed to be used in embedded systems where matching a
FIRST packet to its listening context is a trivial matter. An example is a dedicated point-to-point link carrying
packets for a single pair of communicants.

The syntax for the Null Address Format is shown in figure 14. The null field is four bytes to preserve align-
ment. The value carried in the null field must be zero.

6.4.1.4.2 Internet Protocol address format

The Internet Protocol Address Format, aformat 0x01, is shown in figure 15. The 12-byte address field con-
tains the destination and source IP addresses (dsthost and srchost) and the destination and source port
numbers (dstport and srcport).

The dsthost and srchost fields are each 4-byte IP addresses as defined by RFC 791. The escape code for
extended addressing mode, undefined in IP, is explicitly disallowed in XTP. The 2-byte dstport and srcport
fields are socket numbers.

6.4.1.4.3 ISO connectionless network layer protocol address format

The ISO Connectionless Network Layer Protocol Address Format, 0x02, specifies an NSAP-address and T-
selector value for each endpoint’s address, as shown in figure 16. In this format, destination and source net-
work service access point (dstnsap and srcnsap) addresses are as defined in ISO 8348 addendum 2, where
the maximum length for a binary NSAP address is 20 octets. When an NSAP is less than 20 octets, the
NSAP must occupy the most significant bytes of the dstnsap and srcnsap fields with zeros for padding
(dstnsap and srcnsap are left justified). The length of the transport layer selector fields for the destination
(dsttsel) and originator (srctsel) are given by the values in the dsttsellen and srctsellen fields. Although T-
selector addresses could potentially be longer than 32 octets, the current maximum defined for ISO 8073
(Connection Oriented Transport protocol) is 32 octets. The pad field is used to ensure that the Address Seg-
ment ends on an 8-byte boundary; its contents must be zero. The size of the address field, modulo 8, must
equal 4 so that its length, when added to the address descriptor, is a multiple of 8 bytes in length.

aformat (1)alen (2) adomain (1)

Address Segment

address (4)

Figure 14  –  Null address format

null (4)

dsthost (4)

aformat (1)alen (2) adomain (1)

Address Segment

address (12)

srchost (4) dstport (2) srcport (2)

Figure 15  –  Internet Protocol address format
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6.4.1.4.4 Xerox network system address format

The Xerox Network System Address Format, 0x03, is shown in figure 17. The dstnet field uniquely identifies
the destination network. The dsthost field identifies a specific host. The dstsocket field identifies the desti-
nation socket, and represents the service access point to the application. The source information is given in
a symmetric 12-byte structure. The contents of the pad field must be zero.

6.4.1.4.5 IPX address format

The syntax for the IPX Address Format, 0x04, is the same as XNS, shown in figure 17. The dstnet field
uniquely identifies the destination network. The dsthost field identifies a specific host. The dstsocket field
identifies the destination socket, and represents the service access point to the application. The source
information is given in a symmetric 12-byte structure. The contents of the pad field must be zero.

6.4.1.4.6 Local address format

Address format 0x05 is allocated for local usage (e.g., direct addressing). XTP does not define the address
field when this format is used. Direct addressing is useful for systems having a known, fixed communication
topology, or other applications where a permanent virtual circuit facility is required.

6.4.1.4.7 Internet Protocol version 6 address format

Address format 0x06 is Internet Protocol version 6 Address Format. XTP does not currently define this
address format.

dsttsellen (1)

aformat (1)alen (2) adomain (1)

Address Segment

address ((44 + n + m + p) mod 8 == 4)

pad (p)

dstnsaplen (1) srcnsap (20)

dsttsel (n) srctsellen (1) srctsel (m)

dstnsap (20) srcnsaplen (1)

Figure 16  –  ISO connectionless network layer protocol address format

pad (4)dsthost (6)

alen (2) adomain (1)

Address Segment

dstsocket (2) srchost (6) srcsocket (2)srcnet (4)

address (28)

dstnet (4)

aformat (1)

Figure 17  –  Xerox network system and IPX address formats
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6.4.2 Data Segment

The Data Segment, shown in figure 18, is a variable-length segment. Data Segments must consume
sequence space so that error control, which is based on sequence numbers, can be applied. Data Seg-
ments are intended for transmission of higher-layer application (user) data. Two packet types can include
Data Segments: FIRST and DATA.

6.4.2.1 Data field

The data field of the Data Segment is a variable length field that holds user data. The contents of this field
are not interpreted by XTP.

6.4.2.2 Beginning tag field

The first eight bytes of a Data Segment may be marked, or “tagged,” for special use by higher-layer appli-
cations. These bytes are known as the btag field. The options bit BTAG indicates the presence of the btag
field; when the BTAG bit is not set, the btag field is not present. The btag field is opaque to XTP, meaning
that XTP transmits the contents of the btag field but does not look inside or interpret it. The btag field is
intended to support higher-layer applications such as encapsulation and convergence protocols.

NOTE – Application: The btag field provides a means for applications to mix control information with data while 
avoiding the imposition of another layer of framing within the Data Segment. Here are three examples.

An application wishing to send a mix of audio, video, and text frames could use the btag field to indicate what type 
of frame this packet contains. The receiving application steers the packet according to the value in the btag field.

An application wishing to send a group of files could mark the end of one file and the beginning of another with a 
btag field. The receiving application would know when to process a file change or when to move data without addi-
tional scanning of the data stream or additional handshakes between applications.

An application may wish to encapsulate and forward frames within XTP that arise from a different protocol. An exam-
ple would be multiplexing transactions from one host to a server on a single XTP association. The btag field would 
direct the decoding of the multiplexed data stream at a receiver.

6.4.3 Diagnostic Segment

A Diagnostic Segment is used in the DIAG packet type to convey information that is not necessary for the
correctness of the protocol, but is useful either to the protocol or some other agent (possibly the user). The
format for the Diagnostic Segment consists of the following three fields: code, value, and message, as
shown in figure 19. The code and val fields are 32-bit unsigned integers, and the message field is a variable-
length string. The Diagnostic Segment does not consume sequence number space.

6.4.3.1 Diagnostic code field

The code field specifies a type or category of error that caused the generation of the DIAG packet. The code
field is required and must have a meaningful value. The code specifies the situation that caused the gener-
ation of the DIAG packet. The code values defined are discussed in 8.6.4, “Error notification.”

btag (8)

Data Segment

Figure 18  –  Data Segment fields

data (n)
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6.4.3.2 Diagnostic value field

The val field is defined to more finely specify the type or category of error. A val value can modify the inter-
pretation of the code value, or it can give additional information. For example, a code value may be given
the meaning “invalid context,” and the val value can specify why the context was invalid.

Like the code field, the val field is required and must have a meaningful value. The val values defined for
DIAG packets are discussed in 8.6.4, “Error notification.”

6.4.4 Diagnostic message field

The message field is an optional variable-length string. Receivers are not required to interpret this field. The
message string gives the textual interpretation of the code and val values in a form more conducive to giving
to the user or recording in a log. No user data may be included in this field.

7     Packet types

The seven packet types in XTP provide the mechanism for information exchange between endpoints in an
association.1) This information consists of protocol and user data. Certain packet types are used exclusively
to exchange protocol state information. These packets are generically called control packets. The other
packet types are used to carry information, either in the form of user data or some non-state information.
These packets are called information packets.

The packet type is determined by the pformat field in the cmd field of the header. FIRST packets initiate an
association. Subsequent data is transferred with the DATA packets. Flow control and other state information
required often during an association are conveyed via the CNTL packet. ECNTL packets add error control
information to the control information, and TCNTL packets add traffic control information. DIAG packets are
used to notify the recipient of error conditions at the sending end-system.

The header syntax is common to all packets, and the fields within the header are usually parsed and inter-
preted in the same way for each packet type. The text will call out situations where this is not true.

In general, the key field is used to map the packet to the appropriate context. The cmd field carries options
for this packet and the modes for the association, as well as the packet type identifier and the protocol ver-
sion number. The dlen field is the length of the payload segment, which is anything that follows the header.
The check field contains the checksum over the whole packet unless the NOCHECK bit is set in the options
field, in which case the check field contains the checksum over only the header fields. When the SORT bit
is set, the sort field represents the priority of the packet, otherwise this field must be zero. The sync field
contains the count of the number of packets with SREQ set sent from the context sending this packet. The
seq field, last of the header, indicates the next byte expected on the sender’s outgoing data stream for con-
trol packets, or the first byte in the information segment for data-bearing packets.

1)An eighth packet type, JOIN, is obsolete and is not described in this document.

code (4) val (4)

Figure 19  –  Diagnostic Segment fields

Diagnostic Segment

message (n)
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7.1 FIRST packet

The syntax for a FIRST packet is given in figure 20. The FIRST packet carries all of the information neces-
sary to find a listening context at a destination host, and establish an association between that context and
the sending context. To effect this, the FIRST packet includes an address specification. Once a listening con-
text is found, the traffic specification in the FIRST packet is examined to determine if this listening context
can support the type of traffic specified. If the listening context can support this traffic, the data in the FIRST
packet, if any, are given to the context to be delivered to the user. If not, an appropriate DIAG packet is sent
(see 7.7, “DIAG packet,” for a description of the diagnostic codes for the various error situations).

The entire payload of the FIRST packet is part of the sender’s outgoing data stream, so every byte after the
header is assigned a sequence number. The dlen field indicates the number of bytes in the payload.

Since data streams in both directions begin with sequence number zero, the seq field in the FIRST packet
is used to specify the initial allocation value to be used for the return data stream.

The Address Segment must be matched against the address filter of each of the listening contexts at the
destination host. The syntax of each of the address formats is in 6.4.1.4, “Address field.” A description of
how a FIRST packet is matched with a listening context is in 8.2.1, “FIRST packet matching.”

The Traffic Segment carries traffic shaping parameters. The FIRST packet carries the “offer,” including what
values the sender can maintain and what values the sender wishes to see in return. The receiver of the first
packet must decide if the traffic specification can be met. There are three possibilities: either the traffic spec-
ification can be met outright, or it is within an acceptable range, or it cannot be met at all. These possibilities
follow the rules of traffic negotiation described in 8.2.5, “Traffic specification negotiation.”

A FIRST packet does not have to carry user data, but if it does, there is no limit on the amount carried except
as dictated by the underlying data delivery service MTU. If the BTAG bit in the options field is set, the first
eight bytes of the Data Segment is the btag field and its contents is tagged as out-of-band data.

A FIRST packet is intended to be used only once during the lifetime of the association, assuming it or its
acknowledgment is not lost. The address is needed only once; subsequent packets will use the key field to
identify the proper recipient.

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header

aformat (1)alen (2) adomain (1)

Address Segment

address (4 + 8n)

tformat (1)tlen (2) traffic (4 + 8n)

btag (8) data (n)

Data Segment

service (1)

Figure 20  –  FIRST packet syntax

Address Segment

Traffic Specifier

Data Segment

Traffic Specifier
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7.2 DATA packet

The syntax for the DATA packet is shown in figure 21. After establishment of the association, subsequent
data transfers in both directions use the DATA packet. The seq field indicates the beginning sequence num-
ber for the data contained in the Data Segment. The dlen field gives the length of the data. Every byte in the
Data Segment is counted toward consuming sequence space.

As with the FIRST packet, the BTAG bit in the options field indicates the presence of the btag field.

7.3 CNTL packet

The common control packet is the CNTL packet, shown in figure 22. The seq field holds the sequence num-
ber of the next untransmitted byte to be sent on the outgoing data stream of the sender of this packet. The
CNTL packet, however, does not consume sequence space. The receiver of the CNTL packet can use the
seq value to compare it with the next sequence number expected on its incoming data stream (if FASTNAK
is set, this comparison will indicate the need to generate an ECNTL packet as a fast negative acknowledg-
ment).

The rseq and alloc fields are used to convey flow control information for the sending context’s incoming data
stream. The rseq field holds the highest sequence number for data received without gaps. It therefore rep-
resents the lower edge of the flow control window. If the NOERR bit is set, gaps are ignored, so the value
in the rseq field is the highest sequence number yet seen on the incoming data stream.

The alloc field represents the upper edge of the flow control window. The value it holds is one past the high-
est sequence number acceptable on the incoming data stream.

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header

btag (8) data (n)

Data Segment

Figure 21  –  DATA packet syntax

Data Segment

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header Common Control

rseq (8) alloc (8) echo (4)

Common Control

Figure 22  –  CNTL packet syntax
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The echo field carries the highest sync value yet seen in any incoming packets. The act of echoing this
monotonically increasing number back to its originator gives the originator some idea of how synchronized
the endpoints are. The details of the synchronizing handshake procedure are discussed in detail in 8.6.3,
“Synchronizing handshake,” and in 9.8.2, “Synchronizing handshake.”

A CNTL packet is not used if an error in the data stream is encountered; ECNTL packets are used under
these conditions.

A CNTL packet may be generated at any time, but there are several specific conditions that cause a CNTL
packet to be generated. While the data stream is error free, a CNTL packet is generated in response to the
following conditions:

– the SREQ bit is set in any incoming packet, except during traffic specification negotiation (a TCNTL is
used);

– all of the data received prior to the arrival of a set DREQ bit have been delivered to the user;

– the EDGE bit value in this packet is different from the one in the most recently received packet.

If more than one of the above conditions exist, a single CNTL packet can be sent.

7.4 ECNTL packet

The ECNTL packet is used to convey error control information as well as common control information. The
syntax for an ECNTL packet is given in figure 23. The rseq, alloc, and echo fields are interpreted just as in
a CNTL packet. The additional fields, nspan and spans, provide the sequence numbers of any non-contig-
uous data received on the incoming data stream of the sender of this packet.

The nspan field indicates the number of pairs of sequence numbers held in the spans field. A pair of
sequence numbers, or span, indicate the data that have been correctly received. The gap information, which
can be determined from the spans field, allows this packet’s receiver (the data stream’s transmitter) to selec-
tively retransmit only the missing bytes of data. The first gap is from rseq to the first sequence number in the
first span in the spans field. This spans information can be ignored, in which case go-back-N retransmission
is done by retransmitting from rseq. The procedures for use of the ECNTL packet for error control are given
in 8.6.2, “Acknowledgments and retransmission.”

An ECNTL packet is sent under the following conditions:

– when a CNTL or TCNTL packet should be sent but errors exist in the incoming data stream;

– if the FASTNAK bit is set for the incoming data stream and a gap is encountered.

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header Error Control

rseq (8) alloc (8) echo (4) nspan (4) spans (16n)

Figure 23  –  ECNTL packet syntax

Error Control
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If both of the above conditions exist, a single ECNTL packet can be sent to satisfy both conditions.

7.5 TCNTL packet

The TCNTL packet is used to convey and negotiate traffic shaping information as well as common control
information. The syntax for a TCNTL packet is given in figure 24. The rseq, alloc, and echo fields are inter-
preted just as in a CNTL packet. The additional fields of the Traffic Control segment provide a mechanism
for the key exchange algorithm (xkey field) and parameters for traffic shaping (the Traffic Specifier). The traf-
fic shaping information is held in the traffic field, whose format is determined by the value of the tformat field,
and whose length is given by the tlen field. The formats for the Traffic Specifier segment are described fully
in 6.3.4, “Traffic Specifier segment.”

A TCNTL packet may be generated during an active association when one of the following conditions exists:

– an endpoint wants to modify the current traffic specification;

– an endpoint wants to respond to a traffic specification modification request;

– an endpoint wants to perform a key exchange.

The first and second condition follow the rules for traffic negotiation set forth in 8.2.5, “Traffic specification
negotiation.” The first condition occurs when the context gets new traffic information from the network or new
traffic requirements from the user. A TCNTL packet is generated with the new traffic specification, and sent
to the other endpoint, opening a traffic specification negotiation. This TCNTL must have the SREQ bit set.
A traffic specification negotiation must be delayed if a synchronizing handshake is in progress, until after the
completion of the synchronizing handshake.

The second condition is a response to a suggestion for a (possibly new) setting for the traffic parameters.
When a FIRST packet or TCNTL packet is received, the receiver checks the suitability of the parameters. If
the FIRST or TCNTL packet carries a set SREQ bit, the receiver responds with a TCNTL (if there are no
errors in the data stream), possibly modifying the parameters (or the receiver may reject a suggested traffic
specification outright with a DIAG packet). A TCNTL packet generated under this second condition must not
carry a set SREQ bit.

The third condition arises from the key exchange procedure (8.2.4). Unless the receiver of the FIRST packet
tells the originator what return key to use, the abbreviated context lookup procedure (8.2.3) cannot be used
for packets sent from the originator. The xkey field of the TCNTL packet is used to convey this return key
value back to the originator. A key exchange can happen only once during the lifetime of the association;
prior to and after this exchange, the xkey field must contain a value of zero.

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header Traffic Control

rseq (8) alloc (8) echo (4) rsvd (4) xkey (4)

tformat (1)tlen (2) traffic (4 + 8n)

Figure 24  –  TCNTL packet syntax

service (1)

Traffic Specifier

Traffic Control
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When a TCNTL packet with the END bit set is to be sent, a CNTL packet with the END bit set may be sent
instead.

7.6 JCNTL packet

A JCNTL packet has the syntax shown in figure 25. JCNTL packets are used to establish a multicast asso-
ciation or to join an in-progress multicast conversation. See 9.5, “Multicast packet exchanges,” for details.
The JCNTL packet does not consume sequence number space.

The JCNTL packet consists of a Traffic Control segment, an Address Segment and a Traffic Specifier seg-
ment. The rseq, alloc, and echo fields are interpreted as in a CNTL packet, except that alloc is interpreted
as the window size, in those cases when the value seq is zero. xkey is used to exchange return keys
between receivers and transmitter, as described in 9.5, “Multicast packet exchanges.” The Traffic Specifier
indicates the shape of the traffic that the sender requests or is willing to offer. The contents of the Address
Segment and other details of JCNTL packet usage are described in clause 9, “Multicast functional specifi-
cation.”

7.7 DIAG packet

DIAG packets are used to report pathological conditions that are either fatal or which require corrective
action. The format for a DIAG packet is given in figure 26. The code field indicates the major error category,
and the val field modifies that category with more specific information. The message field is not parsed by
XTP, but may be written to a log file or given to the user. The values for the code and val fields are given in
table 5 and table 6. The circumstances governing DIAG packet generation are given in 8.6.4, “Error notifi-
cation.”

A DIAG packet’s key field identifies the context to receive the DIAG packet. If a DIAG packet cannot be deliv-
ered to a context, the packet is dropped. This is to avoid a “storm” of DIAG packets sent back and forth, each
reporting an error condition the previous DIAG created. Only the NOCHECK bit is meaningful in the options
field of the DIAG. The dlen and check fields must contain meaningful values. All other fields the header must

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header

aformat (1)alen (2) adomain (1)

Traffic Control

address (4 + 8n)

tformat (1)tlen (2) traffic (4 + 8n)

Address Segment

service (1)

Address Segment

Traffic Specifier

Traffic Specifier

rseq (8) alloc (8) echo (4) rsvd (4) xkey (4)

Traffic Control

Figure 25  –  JCNTL packet syntax
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reflect the values from the header of the packet that caused the DIAG to be generated, if one did. Otherwise,
the other fields must contain zero.

DIAG packets are generated when some error condition exists. In general, the error conditions are caused
by:

– the failure to deliver a packet to the destination context;

– a change in the maximum allowable packet size imposed by the underlying data delivery service;

– notification of demise of a host.

A DIAG packet can never have a set SREQ bit. Consequently, it is not protected by the WTIMER, so a lost
DIAG packet cannot readily be detected. For this reason, the protocol is designed to recover from any of the
errors signalled by the DIAG packet by relying on timers to expire.

8     Unicast functional specification

XTP unicast provides a high degree of functionality through orthogonal protocol mechanisms. These mech-
anisms are in the form of fields and bitflags used during packet exchanges over the lifetime of an associa-
tion. Association management procedures define how these fields and bitflags are used during the lifecycle
of the association. The major protocol procedures — flow control, rate control, and error control — are inde-
pendent and configurable.

This clause first defines the fundamental concepts in XTP, including the context and association state
machines. Next, the procedures for unicast association management are discussed, complete with unicast
association establishment and termination. There are several termination semantics, and these are given in
detail. Finally, this clause discusses the particulars of the flow, rate, and error control procedures. A similar
discussion for multicast functional specification is given in clause 9, “Multicast functional specification.”

8.1 Protocol fundamentals

8.1.1 Processes

Conceptually, an XTP implementation consists of four processes: a receiver process, a sender process, a
reader process, and a writer process. The receiver and sender processes provide XTP’s interface to the
underlying data delivery service. The reader and writer processes provide XTP’s interface to the users
(applications). Their relationship to one another and to associated structures is shown in figure 27. The fol-
lowing description of these processes is not intended to imply implementation requirements; these pro-

Figure 26  –  DIAG packet syntax

key (8) cmd (4) dlen (4) check (2) sort (2) sync (4) seq (8)

Header

code (4) val (4)

Diagnostic Segment

message (n)

Diagnostic Segment
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cesses are used in the protocol description to compartmentalize the responsibilities of the protocol
procedures.

The receiver process acts on packets received from XTP’s underlying data delivery service, directing the
packets to the appropriate contexts. A packet is matched to its context by using some packet header infor-
mation to index into the translation map. Once found, the context parses the packet’s control information. If
the packet is a data-bearing packet, the data are placed directly into input queues pending commitment from
the context. When the context is assured that the data are valid, it commits the data to the reader process.
The users then access this data through the reader process.

The writer process acts upon output commands from the users, placing data into the output queues and
informing the appropriate contexts of the data’s presence. The contexts construct packets and give them to
the sender process. The sender process pulls data from the output queues into the outgoing data-bearing
packets, and gives the data and control packets to the underlying data delivery system.

8.1.2 Context state machine

The state diagram for a context is shown in figure 28. All contexts in an implementation exist in a quiescent
state until they are activated. When a user submits an input command, a quiescent context moves to the
listening state. This must occur some time before another user at a remote host issues an output command.
The output command causes a quiescent context at this remote host to move directly into the active state,
and a FIRST packet to be generated and sent. When this FIRST packet is received by the context in the
listening state (and all conditions are met for accepting this FIRST packet), the listening context moves into
the active state. The contexts at both endpoints are now active, and data transfer may occur in both direction
for an arbitrary length of time. When the contexts are finished sending and receiving data, they each move
into the inactive state. When one of the contexts issues a packet with the END bit set, the association is
terminated and both contexts return to quiescent states.

8.1.3 Association state machine

The state diagram for an association is shown in figure 29. This diagram is from the point of view of one of
the contexts in the association. The association state machine begins with both the incoming and outgoing
data streams in the active state. The dual nature of this state machine reflects the fact that an association
controls two data streams. As data flows in both directions, both data streams remain in active states.

Input Queues

Contexts

Output Queues

To

From
Users

Users

Data
Delivery
Service

Figure 27  –  XTP host architecture
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The outgoing data stream side moves from output active to local writer closed when a packet is sent with
the WCLOSE bit set. The local writer process may not transmit any new data (no sequence space can be
consumed from this point on), but previously transmitted data may be retransmitted. When a packet is
received with its RCLOSE bit set, the outgoing data stream moves from local writer closed to output inactive.
Receiving an RCLOSE bit implies that all data have been received to the satisfaction of the receiver, so no
further DATA packets whatsoever can be sent on the outgoing stream.

Independently, the incoming data stream moves from input active to remote writer closed when a packet
with the WCLOSE bit set is received. This tells the context that no new data will be arriving on this data
stream. When all data have been received, according to the error control parameters, a packet with the
RCLOSE bit set is sent. This moves the incoming data stream into the input inactive state.

Either data stream may go inactive first, but once both data streams have gone inactive, they both move into
the association inactive state. This is equivalent to the context inactive state. When one of the endpoints
sends a packet with an END bit set, the association moves from inactive to closed, which is the condition
for the context state machine to move from inactive back to quiescent.

8.1.4 Data streams

A data stream is an abstraction for an arbitrary length string of sequenced bytes, where each byte is asso-
ciated with a sequence number. The sequence space for a data stream starts at zero and continues indef-
initely. Only specific fields in XTP packets consume sequence space. Sequence space is conceptually
monotonically increasing, but due to finite sequence number representation, “rollover” may occur such that
one byte may be further into the sequence space than another but have a smaller sequence number. Imple-
mentations must ensure that sequence numbers always represent relative positioning within the sequence
space.

8.1.5 Sequence numbers

Sequence numbers provide the basis for flow control and error control between XTP endpoints. Flow control
regulates the volume of data that may flow between endpoints by controlling the portion of sequence space
that may be transmitted. Data reception is acknowledged in terms of sequence numbers. Also, transmission
errors and retransmissions are defined in terms of pairs of sequence number, called spans, that delineate
portions of the sequence space.

8.1.6 Buffers

A buffer is an arbitrary area of memory designated by an application program. A buffer may be a block of
contiguous memory, or it may be represented as a set of virtual pages in an operating system. An applica-
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tion may wish to describe a buffer as a list of noncontiguous memory segments, often called a scatter-gather
list. The distinctions between pages and lists are important issues, but are too system-dependent to be dis-
cussed in this document.

8.1.7 Packets

A packet is the data transfer unit defined by XTP. A buffer may fill several packets since there is no restriction
on buffer size. A message consists of one or more buffers. An XTP packet is contained, or encapsulated,
within one or more lower layer frames. This lower layer is the underlying data delivery service for XTP. XTP
is designed to be independent of lower layer influences, but it does depend on lower layer addresses and
expects a validity check from the lower layer.

8.1.8 Timers

There are several timers that are used or maintained during the lifetime of an association. The WTIMER is
used to bound the amount of time a context will wait on a response to a status request (a set SREQ bit in
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any sent packet). The CTIMER is a long-duration timer used to generate keep-alive packet exchanges. The
CTIMEOUT timer bounds the amount of time an endpoint will try to reestablish the association before giving
up. The RTIMER is the rate control timer, governing the length of time between bursts of data.

8.2 Association management

An association is established when a listening context receives a FIRST packet, and both this and the initi-
ating context have moved into the active state. A received FIRST packet is matched against all listening con-
texts to find one that will accept the incoming data stream. This is described in 8.2.1, “FIRST packet
matching.” “Full context lookup” and “Abbreviated context lookup” describe mapping incoming packets to the
appropriate contexts. “Key exchange” describes an optional optimization that eliminates the need for full
context lookups for incoming packets. When there is no longer a need for the association, the association
is closed using procedures described in “Association termination.”

8.2.1 FIRST packet matching

A received FIRST packet, if it is not discovered to be a duplicate for an already active context, is subjected
to a matching algorithm to determine which listening context, if any, should get the FIRST packet. Each lis-
tening context submits an address filter that represents the values of an address that the context is willing
to accept, as well as acceptable traffic shaping parameters and options bits. The FIRST packet’s contents
are compared against each listening contexts’ criterion for acceptance until either a match is made or all
listening contexts have been examined.

Upon receipt of a FIRST packet, the receiving host takes the following steps:

a) If a full context lookup (see 8.2.2) on this FIRST packet finds an active context, the FIRST packet is a
duplicate; the context to which this packet belongs should respond to the SREQ and DREQ bits, if set,
and accept any additional data carried within, but no new context becomes active;

b) If the FIRST packet is not a duplicate, the receiving host performs a series of comparisons to find an
appropriate listening context:

1)  The address field within the Address Segment of the FIRST packet is matched against a set of
filters;

2) The service field in the Traffic Specifier segment is matched against the context’s service value: if
the context’s service value is 0, any service field value will match; otherwise the values must match
exactly;

3) The traffic specification values in the Traffic Specifier segment are matched against the traffic
specification acceptable by the context;

4) The settings of the option bits in the options field of the header of the FIRST packet are examined
for acceptability;

c) If the FIRST packet’s address, traffic specification, and options are acceptable, the FIRST packet is
given to this listening context;

d) Otherwise, the matching algorithm moves on to the next listening context, and the comparisons in step
“b” are repeated.

If all of the listening contexts are examined but no acceptable match is made, the FIRST packet is rejected
by using a DIAG packet whose code value is 1, “Context Refused.” There is a hierarchy of rejection reasons,
as indicated by the val value:
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a) Failure due to the Address Segment:

– val 1: “No listener”;

– val 3: “Address format not supported”;

– val 4: “Malformed address format”;

b) failure due to the service field:

– val 8: “No provider for service”;

c) failure due to the Traffic Segment:

– val 5: “Traffic format not supported”;

– val 6: “Traffic specification refused”;

– val 7: “Malformed traffic format”;

d) failure due to the options bits:

– val 2: “Options refused.”

If none of these reasons apply, the rejection should be done using a DIAG packet with code value 1 and val
value 0, “Unspecified.”

The listening context is allowed to reject FIRST packets if the options are not acceptable. In particular,
NOCHECK, NOERR, MULTI, RES, SORT, NOFLOW, FASTNAK, and RCLOSE are options whose values,
set or cleared, may be grounds for rejecting the FIRST packet.

NOTE – Implementation: How the user specifies which options bits are acceptable and which are not is strictly an 
issue for the API. However, a useful concept is a yes_mask and a no_mask. The yes_mask specifies the set of bits 
that must be set. The no_mask specifies the set of bits that must not be set. The following logic formula will indicate 
if the packet should be rejected:

If the address and service fields match a context, and the Traffic Specifier and options values are accept-
able, the FIRST packet is accepted. An entry for this context is made in the translation map that will map to
this context any incoming packets whose key field is the same as this FIRST packet’s key field, and whose
source host’s address (obtained from the underlying data delivery service) is the same as this FIRST
packet’s source host’s address. This entry is fundamental in the full context lookup, described next. The
packet is given to the found context, which has now moved from the listening state to the active state.

NOTE – Implementation: If addresses from the underlying data delivery service are not unique within a local host, 
there may be problems with implementing the translation map. This situation is common for hosts which are con-
nected to multiple physical networks, since unique address are usually not required across separate networks. One 
way to avoid this ambiguity is to construct a host-unique prefix for each underlying data delivery service used by the 
host, and add this prefix to all addresses obtained from the underlying data delivery service before using those 
addresses internally.

8.2.2 Full context lookup

The full context lookup procedure maps an incoming packet to the appropriate active context if the key value
in the incoming packet is not a return key (that is, the RTN bit is not set in the key field of the packet). The

yes_mask | options( ) options–( ) || no_mask & options( )( )



Proposed SMPTE Standard — XTP (draft 3)

Page 40 of 100 pages

translation map structure holds the mapping from packet information to appropriate context. The packet
information is used as an index into the translation map to retrieve the handle of the context.

The key field of an incoming packet is checked to determine if it is a return key or a normal key. If it is a return
key, the abbreviated context lookup procedure, described next, is used. If the key value is not a return key,
that key value and the packet’s source host’s address (obtained from the underlying data delivery service)
are used as a pair to index into the translation map. If a FIRST packet with this key value has been received
from this packet’s source host, a mapping will exist in the translation map. If not, the lookup will fail, and a
DIAG packet (containing the code for “Invalid Context”) should be returned to this packet’s sender.

8.2.3 Abbreviated context lookup

The abbreviated context lookup procedure is an optimized method for mapping an incoming packet to the
appropriate context without using the translation map. By definition, a key value is generated by a host to
be unique within that host. Then the key value is placed into the key field of the FIRST packet. When the
FIRST packet is received and given to the matching listening context, that context notes the FIRST packet’s
key value, sets its RTN bit, and uses this value as the return key. The return key value is placed in any pack-
ets sent in the return direction to the host that sent the FIRST packet.

If the key field of a received packet holds a return key, the context manager knows immediately that the key
value from which this return key is derived was generated at this host. Since the key value is unique within
this host, there is a direct mapping from this key value to the context for whom the key value was generated
(e.g., it could be an index into an array of contexts). The abbreviated context lookup procedure is the imple-
mentation-dependent method for making this direct mapping.

8.2.4 Key exchange

Packets sent in the return direction are matched with their intended context via the abbreviated context
lookup procedure, but packets sent in the forward direction cannot be matched this way because these
packets do not carry return keys. The key exchange procedure is the method by which the context that
received the FIRST packet can tell the context that sent the FIRST packet what return key value to use, so
that both sides can use the abbreviated context lookup procedure.

At some point during the association, but usually in response to the first SREQ received from packets trav-
elling in the forward direction, a key exchange can occur. The key exchange procedure uses the xkey field
in a TCNTL packet. The context that received the FIRST packet places into the TCNTL packet that context’s
key value with the RTN bit set. This is that context’s return key value. The context that sent the FIRST packet,
upon receipt of this TCNTL packet, must note the value of the xkey field and must use this value as the key
value in all outgoing packets from that point onward.

A key exchange procedure is optional; if it is not performed, a full context lookup will be required for all pack-
ets without a return key in its key field. If a key exchange is done, however, packets in both directions of the
association must carry the appropriate return key in the key field. These packets, upon receipt, can be
mapped to their proper contexts via the abbreviated context lookup procedure.

8.2.5 Traffic specification negotiation

A traffic specification is a contract between the application and the service provider regarding the shape of
the data being transferred. There are potentially many parameters to the shape of traffic, including the
throughput, maximum size of a burst of data, frequency of individual packets, interpacket spacing, and jitter.
There is no canonical list of traffic parameters. Instead, XTP uses a segment, the Traffic Specifier, where a
set of traffic specification formats is defined for various situations (see 6.3.4, “Traffic Specifier segment”).

XTP provides a mechanism for negotiating traffic shaping parameter values. The FIRST packet carries a
Traffic Specifier suggesting the parameters for the traffic (these values may include what the sender would
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like to use in the forward direction, and specifying the values that should be used for traffic in the return direc-
tion). A TCNTL packet must be generated any time the traffic specification changes during the association.

The traffic specification negotiation is a two-way handshake. The initial packet in the handshake may be
either a FIRST packet (the beginning of an association) or a TCNTL packet (subsequent to the establish-
ment of the association). A traffic specification negotiation is delayed if a synchronizing handshake is cur-
rently in progress. The first packet in the handshake (FIRST or TCNTL) must have the SREQ bit set. When
the initiator of the negotiation sends a packet with the SREQ bit set, the negotiation is said to be open; the
initiator must save the sync value sent in this initial packet. The receiver of this initial packet has three
choices:

– reject the traffic specification outright;

– accept the traffic specification outright;

– accept the traffic specification with modifications.

If the receiver of the packet chooses to reject the traffic specification, the receiver returns an appropriate
DIAG packet (“Request Refused, Traffic specification refused” or “Request Refused, Options refused”). If
the receiver chooses to accept or modify the traffic specification, it will respond with a TCNTL packet with
the SREQ bit cleared.

The traffic specification negotiation is terminated when the initiator of the negotiation receives a TCNTL
packet whose echo field matches that of the sync field from the initial packet of the negotiation. If the
WTIMER expires while there is an open negotiation, a synchronizing handshake (8.6.3) using TCNTL pack-
ets occurs.

The initiator of the traffic specification negotiation performs the following steps:

a) The Traffic Specifier of a FIRST packet (if this is the initial packet of the association) or a TCNTL packet
(otherwise) is loaded with the traffic specification request, the options field is loaded with the
appropriate options, and the SREQ bit is set;

b) The value from the sync field from this packet is saved in a variable saved_sync;

c) A state variable tspec_neg_open is set to true;

d) If a TCNTL packet is received whose echo value equals the saved_sync value, the negotiation is
complete; set tspec_neg_open to false and examine the Traffic Specifier and options field values for
acceptability;

e) If an ECNTL packet is received whose echo value equals the saved_sync value, and tspec_neg_open
is true, first satisfy the retransmission requests, then send the Traffic Specifier again in a TCNTL
packet, with the SREQ bit set; go to step “b”;

f) If the WTIMER expires and tspec_neg_open is true, a synchronizing handshake using TCNTL packet
is begun; on successful termination of the synchronizing handshake, go to step “d.”

Likewise, the receiver of a traffic negotiation request performs the following steps:

a) Any received packet with the SREQ bit set, including a FIRST or TCNTL packet, can cause an ECNTL
packet to be generated if gaps in the data stream have been noticed (see 7.4); generating an ECNTL
under error conditions takes precedence over responding to the negotiation request;
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b) If no gaps exist in the data stream, the Traffic Specifier and the options field from a received FIRST or
TCNTL packet with the SREQ bit are examined for acceptability;

c) If acceptable, a TCNTL packet is sent with the SREQ bit cleared, echo field containing the rcvd_sync
value, the Traffic Segment loaded with the traffic specification response, and the options field set with
the appropriate options (if the END bit is to be sent in this packet, a CTNL packet may be used instead
of a TCNTL packet);

d) If unacceptable, an appropriate DIAG packet is sent, if allowed.

If either the receiver of the request or the receiver of the response does not accept the traffic parameters or
the options bits, the traffic specification negotiation is rejected with a DIAG packet.

DATA and CNTL packets may be exchanged during a traffic specification negotiation, but any data sent dur-
ing the negotiation may be rejected if the data do not meet the negotiated traffic specification.

8.2.6 Changing modes

Changing the mode bits of the options field changes the characteristics of the association. These bits
include NOERR, RES, SORT, and NOFLOW (MULTI cannot be changed). Either endpoint may reject the
change of the mode bits.

Since packet reordering may occur, leading to possibly unpredictable data transfer policies, a conservative
method for changing mode bits during an association is to use a traffic specification negotiation, and restrict
data transfer until the traffic negotiation is complete.

8.2.7 Association termination

An XTP association between a pair of contexts, A and B, involves a pair of simplex data streams: A-to-B and
B-to-A. Each context is the sender for one of the data streams and the receiver for the other one. In order
for an association to be terminated, both contexts must be released. An association is closed by completing
the packet exchanges with WCLOSE, RCLOSE, and END bits (see figure 29). Closure is achieved with var-
ious degrees of gracefulness, depending on the bits used and the order in which they are set.

The WCLOSE bit is set when the sender has completed the transmission of all data in its outgoing data
stream. Once the WCLOSE bit is set in an outgoing packet, all subsequent outgoing packets, except retrans-
mitted DATA packets, must carry the set WCLOSE bit.

There are two cases when the RCLOSE bit may be sent in an outgoing packet: (1) the RCLOSE bit is sent
in the FIRST packet, indicating that the sender’s incoming data stream is closed and this association will be
simplex, and (2) the RCLOSE bit is sent after the receipt of a packet with the WCLOSE bit set, and all data
on the incoming data stream have been received in accordance with the error control parameters for that
data stream. The receipt of an RCLOSE bit prior to sending a WCLOSE bit is a protocol error. Once set, the
RCLOSE bit must be carried in all subsequent outgoing packets.

After a WCLOSE is received, the error control procedures must ensure that all data on the incoming data
stream have been received, according to the error control parameters. Once the error control procedures
have been satisfied, the RCLOSE bit must be sent in the next outgoing packet.

NOTE – Design: The only two ways one endpoint can cause another endpoint to generate a packet is by setting the 
SREQ or DREQ bit, or both, in an outgoing packet. As a consequence, when a WCLOSE bit is sent, it is the user’s 
responsibility to ensure that either some packet will be generated at the other endpoint to return the RCLOSE, or an 
error report in the form of an ECNTL packet will be generated. Typically, an SREQ will accompany the WCLOSE for 
these reasons.

If an SREQ is sent with a WCLOSE, and retransmissions were needed, an SREQ should be sent with the last 
retransmitted DATA packet (see 8.6.2, “Acknowledgments and retransmission,” for complete details on retransmitting 
an SREQ bit).
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The END bit indicates the end of the association and is only sent once. The context sending the END bit
goes quiescent immediately, subject to remaining in a zombie state for connection hazard reasons. The con-
text receiving the END bit immediately goes quiescent as well, but is not subject to remaining in a zombie
state.

The sender of the END bit must wait in a zombie state for a duration of CTIMEOUT. This is to eliminate con-
nection hazards resulting from the case where the packet carrying the END bit is lost. Otherwise, if the
intended receiver of the END bit requests a retransmission, the host sending the packet with the END bit
set would respond with a DIAG, and the receiver would not know if the connection was lost or finished grace-
fully. This is avoided by maintaining a zombie context with at least enough state information to respond to a
retransmission request. For situations where the hazard will not arise, or the users do not care, the CTIM-
EOUT can be reset to zero, effectively eliminating the zombie state. If, while in the zombie state, a context
receives a packet with the END bit set, the context can immediately become quiescent.

8.2.7.1 Fully graceful independent close

While XTP does not define specific close semantics, several close handshakes are particularly useful. A
fully graceful independent close is shown in figure 30. Context A initiates the close of its outgoing data
stream with a packet with WCLOSE set. When all data are accounted for according to the error control
parameters for the A-to-B data stream, Context B responds with a packet with RCLOSE set. At this point,
the A-to-B data stream is gracefully closed, but the B-to-A data stream remains open. Later, Context B ini-
tiates the close of its outgoing data stream by setting the WCLOSE in an outgoing packet. Context A
responds accordingly with an RCLOSE. At this point, Context B sends a packet with the END bit set, and
the association is terminated.

8.2.7.2 Abbreviated graceful close

Although closing each of the two data streams of an association is an independent activity, the exchange of
the packets can be abbreviated by “piggybacking” some of the close bits on the same packet. Figure 31
shows how a fully graceful close can be achieved using only three packets. Context A initiates the close by
setting the WCLOSE bit in an outgoing packet. The packet carrying the RCLOSE from B to A also carries
the WCLOSE for the B-to-A data stream. The third packet carries the RCLOSE for the B-to-A data stream,
and the END bit to end the association. Note that this is only graceful if Context A enters the zombie state
after sending the END bit.

WCLOSE

WCLOSE|RCLOSE

WCLOSE|RCLOSE

WCLOSE|RCLOSE|END

Context A Context B

RCLOSE

Figure 30  –  Fully graceful independent close
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8.2.7.3 Forced close

Figure 32 shows how Context A can gracefully close the A-to-B data stream but cause the B-to-A data
stream to close ungracefully. The WCLOSE bit is set in a packet from Context A to Context B. This initiates
the graceful close for A-to-B. The RCLOSE in the return packet acknowledges the A-to-B WCLOSE. The
last packet carries a set END bit, ending the association.

8.2.7.4 Abortive close

Sending the END bit at any time during the life of the association aborts the association, regardless of the
state of each of its data streams. A single packet carrying the END bit is shown in figure 33.

8.2.7.5 Close due to inactivity

An association is also terminated if no packets are received at one of the contexts for some period of time.
The connection timer CTIMER is used to allow XTP to recover from system and network failure by measur-
ing inactivity. The CTIMER is enabled when the association first becomes active. The length of the CTIMER
interval must meet the criterion put forth in the implementation note in 6.2.1, “Key field.” The context counts
the number of packets that have arrived during the CTIMER interval. If the packet count is greater than zero
when the CTIMER expires, the CTIMER is restarted. If the packet count is zero, the CTIMER is restarted,
and the context initiates a synchronizing handshake (8.6.3) to verify that the other endpoint is still alive. If
the synchronizing handshake fails, the context is aborted.

WCLOSE

WCLOSE|RCLOSE

WCLOSE|RCLOSE|END

Context A Context B

Figure 31  –  Abbreviated graceful close

WCLOSE

WCLOSE|END

Context A Context B

RCLOSE

Figure 32  –  Forced close
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8.3 Timers

There are four timers that facilitate the protocol’s control procedures. Lost packets are discovered using the
WTIMER. A lost association is discovered using the CTIMER. The CTIMEOUT timer monitors a synchro-
nizing handshake, limiting the length of time the handshake is attempted. The RTIMER is the rate control
timer used to space bursts of data.

The WTIMER is the timer that guards against the loss of a packet with the SREQ bit set. Whenever a packet
is sent with the SREQ bit set, the transmitter increments the saved_sync value by one and places it into the
sync field of the packet, as described in 6.2.6, “Synchronizing handshake field.” The context sending the
packet with the SREQ bit set also starts the WTIMER, loading it with a smoothed round-trip time estimate
(see the implementation note in 6.3.1.3, “Synchronizing handshake echo field”). The WTIMER is the amount
of time the transmitter will wait for the arrival of the control packet requested with the SREQ bit.

NOTE – Implementation: It is an implementation decision whether or not multiple WTIMERs are kept if multiple sta-
tus requests are outstanding. If only one WTIMER is kept, the WTIMER must be restarted for each packet sent with 
the SREQ bit set, even if the WTIMER were already running.

If a control packet arrives at the transmitter before the WTIMER expires, the value in the echo field is com-
pared with the saved_sync value. If they are equal, the WTIMER is stopped. If the WTIMER expires, the
context starts the synchronizing handshake, described in 8.6.3

The CTIMER is the timer that ensures that the other endpoint of the association is still alive. When an con-
text becomes active, the CTIMER is armed. This is a long duration timer. A count is kept of all of the packets
that arrive at this context. When the CTIMER expires, the context examines the packet count. If the count is
greater than zero, the CTIMER is reloaded and the packet count is cleared. If the count is zero, the CTIMER
is reloaded, and the context enters into a synchronizing handshake, described in 8.6.3.

The user should be able to set the length of the CTIMER interval, but the user must not be allowed to disable
the CTIMER. The CTIMER duration must be bounded so that the key anti-aliasing properties can be
asserted (see the implementation note in 6.2.1, “Key field,” for details about why CTIMER has a maximum
value).

The CTIMEOUT timer limits the amount of time a synchronizing handshake can continue before the context
aborts the association, as described in 8.6.3, “Synchronizing handshake.” The CTIMEOUT timer is also
used when a context goes into the zombie state after sending a packet with the END bit set. The CTIMEOUT
timer can be disabled by setting the CTIMEOUT interval to zero, but if this is done, the initial value of the
retry_count for the synchronizing handshake must not also be zero.

The RTIMER is the rate control timer used to govern the frequency of sending bursts of data. Its use is
described in 8.5, “Rate control.”

8.4 Flow control

The volume of XTP output is regulated by an end-to-end windowing flow control mechanism. (The rate at
which XTP sends packets into the network is regulated by an independent, timer-based mechanism

END

Context A Context B

Figure 33  –  Abortive close
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described in 8.5, “Rate control.”) XTP’s flow control is based on a sliding window of sequence numbers. A
sequence number is assigned to each output byte of the data stream, starting with the initialized sequence
value.

Two fields in control packets are used in the flow control procedures. The value in the alloc field in a control
packet sent to the transmitter indicates the sequence number not to be exceeded by the transmitter. This
value represents the upper edge of the flow control window. The value in the rseq field in a control packet
sent to the transmitter is one greater than the last byte contiguously received. This value serves as the lower
edge of the flow control window.

Two option bitflags modify the way flow control is handled. The RES bit sent by the transmitter indicates to
the receiver that the receiver should advertise conservative flow control values, specifically, the alloc value
should reflect only as much buffer space as the user has allocated for the association. This is called reser-
vation mode. The NOFLOW bit indicates to the receiver that the transmitter does not wish to adhere to flow
control constraints, so flow control in the forward direction will be disabled. If the receiver does not wish to
abide by these modes, the receiver can reject the association with a DIAG packet.

A sender in reservation mode must wait for a new allocation from the receiver after sending an EOM or a
BTAG. The reason for this is that the EOM/BTAG may truncate the application read operation without filling
the entire buffer. The sender’s allocation will then be optimistic by an amount equal to the truncated part of
the buffer.

8.5 Rate control

Rate control governs the producer-consumer relationship between XTP endpoints. Rate control is con-
cerned with how fast packets and their contents can be processed, or consumed, at the receiver. Parame-
ters throttling the rate of production can be fed back to the sender through the rate control parameters of the
Traffic Specifier. The Traffic Specifier tformat 0x01 (see 6.3.4.3) has explicit rate control parameters. If
explicit rate control parameters are available, default rate and burst parameters must be used.

The output packet rate is regulated by two context variables, credit and burst, and by a refresh timer called
RTIMER. (The credit and burst variables are not required by XTP but are useful for explaining rate control.)
The values for credit and burst are calculated from the rate and burst. The rate value specifies the maximum
data rate in bytes per second. The burst value specifies the maximum number of bytes to be sent in a burst
of packets. The rate value divided by the burst value gives the number of burst-size transmissions per sec-
ond, or the rate at which the credit variable is refreshed. The burst value divided by the rate value gives the
time period for RTIMER.

The credit and burst variables are initialized with the burst value. With each outgoing data-bearing packet,
credit is decremented by the size in bytes of the user data transmitted. Data transmission must cease when
credit becomes zero or negative. Upon each expiration of RTIMER, the internal variable credit is updated
with the value burst. That is, credit is updated approximately rate/burst times per second. The update pro-
cedure is as follows:

– if credit is zero or negative, add burst to the value of credit;

– if credit is positive, then replace it with burst.

A value of zero for burst means that this context is not constrained, and can transmit at will. A value of zero
for rate halts data transmission completely, although control packets at (approximately) WTIMER intervals
are permitted.

Except when rate is zero, credit is decremented by the size of the information segment in each transmission.
Output is permitted as long as credit remains greater than zero, and is suspended when credit becomes
zero or negative. The suspended state lasts until credit is refreshed at the next RTIMER interval.
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Note that the rate control in one direction along an XTP path is distinct and may differ from the rate in the
opposite direction.

8.6 Error control

Error control in XTP is based on the exchange of information regarding lost or damaged data and the
retransmission of these data. Each packet is examined for damage by performing a checksum, either over
the header only or over the whole packet. Lost data are detected and recovered using an acknowledgment
and retransmission procedure. The loss of a status request is detected by a timer; recovery in this case
starts an exchange of packets designed to synchronize the endpoints of the association. Notification of other
error conditions, such as unexpected packets or protocol errors, is made using DIAG packets. These facets
of XTP’s error control procedures are described here.

8.6.1 Checksum

The XTP checksum function is the same function used for Internet protocols. The algorithm is a 16-bit one’s
complement sum over all octet pairs concerned (if the number of octets is odd, the last is data is zero pad-
ded and added in). The checksum is performed over the whole packet if the NOCHECK bit is cleared, and
over the header only if the NOCHECK bit is set.

The check field (6.2.4) of the header segment of XTP packets carries the checksum value. When the check-
sum is to be calculated, the check field is cleared, and the one’s complement sum is formed over pairs of
octets. Carries are folded back into the sum on two’s complement machines (i.e., the overflows from the
most significant end are added to the least significant bit). The result of the sum is placed into the check field.

To verify the checksum, the one’s complement sum is again calculated over the octets concerned, including
the check field. The checksum should be zero in the one’s complement sense if the check succeeds. A C
function for this checksum is given in annex A, "Check function."

A received packet that fails the checksum is dropped, and no further action is taken.

8.6.2 Acknowledgments and retransmission

A receiver detects missing packets by checking its incoming packet stream for gaps in the sequence space.
The receiver records the missing data by keeping the sequence number of the first missing byte, and option-
ally by keeping a list of spans of correctly received data. When a control packet is to be sent, the context
checks to see if any data are missing. If there are no data missing, then a CNTL packet is used. This packet
acknowledges the receipt of all data whose sequence numbers are less than the value in the rseq field
(6.3.1.1). If missing data have been detected, an ECNTL packet is sent. In addition to using the rseq field in
this packet to acknowledge data in the same manner as in the CNTL packet, the nspan and spans fields
(6.3.2.1 and 6.3.2.2) are used to selectively acknowledge spans of data received.

Receipt of an ECNTL packet implies that some data have been lost. The rseq, nspan, and spans fields spec-
ify what data are lost. The transmitter may retransmit data whose sequence numbers start at rseq and con-
tinue to the highest sequence number sent by the transmitter. This is go-back-N retransmission.
Alternatively, the transmitter may selectively retransmit only the data specified as missing. In this case, the
transmitter retransmits data starting at rseq and continuing up to, but not including, the first value of first
spans pair. The next piece of retransmitted data is from the second value of the first spans pair to the first
value of the second spans pair. This is illustrated by the example in 6.3.2.2.

NOTE – Design and Implementation: Maintaining selective acknowledgment queues and tracking spans and gaps 
can lead to considerable complexity and overhead. This overhead can be justified when there are high packet loss 
rates (whether from buffer overflow or network error rates) coupled with low bandwidth transmission, or long propa-
gation delays (with or without high bandwidth). In these circumstances, overall network throughput can be improved 
by selective retransmission. However, in high bandwidth, low delay, and low packet loss networks, there may be no 
detectable performance difference between using selective retransmission or using simple go-back-N.
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When the cost of maintaining selective acknowledgment queues is not justified, an XTP receiver may maintain just 
rseq and hseq, the value of the highest sequence number seen. Since the ECNTL packet design contains the fields 
for both policies, various kinds of XTP implementations can interoperate. A receiver that implements selective 
acknowledgment will interoperate with a sender that only does go-back-N, and a receiver that records only go-back-
N information can interoperate with a sender that is capable of selective retransmission.

A transmitter requests the status of the receiver’s incoming data stream by setting the SREQ or DREQ bits
in an outgoing packet’s header. The SREQ bit indicates to the receiver that the status must be reported
immediately. The DREQ bit indicates to the receiver that the status request should be satisfied only after the
delivery to the user of all data whose sequence numbers are less than the value in the seq field, if this packet
is a control packet, or the value of the seq field plus the value of the dlen field, if this packet is a data-bearing
packet.

If the transmitter has set the FASTNAK bit in outgoing packets, the receiver is instructed to send ECNTL
packets without first being asked to do so via the SREQ or DREQ bit. The FASTNAK bit indicates “fast neg-
ative acknowledgment mode”; an ECNTL packet is generated when the receiver discovers a gap in the data
stream, that is, when the seq field value is greater than the next sequence number expected. The receiver
generates an ECNTL packet reporting this gap. The receiver may not generate another ECNTL packet in
response to a gap until it receives at least one packet for which the seq field value is the next sequence
number expected. This is to avoid a storm of retransmissions.

NOTE – Implementation: An implementation may limit the transmitter to retransmit only once any missing data indi-
cated by an ECNTL packet until it can be determined that the retransmitted data have also been lost. This can be 
accomplished by keeping two additional sequence variables, kseq and kseq_sync, in the transmitter. The variable 
kseq is set to the maximum of the received rseq value and the highest retransmitted sequence number. The variable 
kseq_sync is set to the sync value of the last retransmitted packet. If the echo field of a subsequently received 
ECNTL packet is greater than or equal to the value in kseq_sync, the kseq variable is reset to rseq. Only data whose 
sequence numbers are greater than or equal to kseq are retransmitted.

Control of errors in the data stream can be turned off by the transmitter by setting the NOERR bit in all out-
going packets. This is called “no-error mode.” In no-error mode, the receiver must set the rseq field of control
packets to the highest sequence number seen on its incoming data stream. An ECNTL packet is, therefore,
never used by the receiver when in no-error mode.

8.6.3 Synchronizing handshake

A synchronizing handshake is a control packet exchange where the sync field in the outgoing control packet
must match the echo field in the incoming control packet. After this procedure, the transmitter is certain of
the receiver’s state. The procedure is intended to eliminate spurious decisions that might be caused by net-
work timing anomalies and packet loss. The procedure uses the sync field from the header, the echo field
from the Control Segment, the WTIMER, the CTIMEOUT, and a retry_count variable. The variable
retry_count governs the number of times the request control packet is sent. The CTIMEOUT timer bounds
the total amount of time expended on the synchronizing handshake. If either CTIMEOUT expires or the num-
ber of retries exceeds a limit, XTP aborts the association.

When a packet is sent with the SREQ bit set, the packet’s sync value is saved in the variable saved_sync,
and WTIMER is started, as described in 8.3. If the WTIMER expires before a control packet arrives whose
echo field value is equal to the value in saved_sync, the context enters into the synchronizing handshake
procedure. The objective is to probe the receiver with control packets at exponentially increasing time inter-
vals until there is a successful handshake, or the CTIMEOUT or retry_count safeguards abort the context.
No data-bearing packets are allowed to be sent during a synchronizing handshake, including retransmitted
data; retransmission may proceed once the handshake has completed. The transmitter takes the following
steps:

a) Load the CTIMEOUT timer with its initial value, reset the retry_count to its initial value, and set an
exponential backoff variable K to 1.
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b) Send a control (CNTL, ECNTL, or TCNTL, as appropriate) packet with the SREQ bit set, and save the
sync value from that packet in the variable saved_sync.

c) Load the WTIMER with K times a smoothed round-trip time estimate (see the implementation note in
6.3.1.3).

d) If any received control packet contains an echo field that matches the value of saved_sync, then the
synchronizing handshake is complete; stop the CTIMEOUT and WTIMER timers.

e) If the WTIMER expires before the conditions in step “d” are satisfied, decrement the retry_count by 1,
multiply K by 2, and go to step “b.”

f) If either retry_count equals 0 or the CTIMEOUT timer expires, abort the association.

8.6.4 Error notification

A DIAG packet is used to notify the endpoints of an association when an error occurs. DIAG packets are
generated either by a context or by the XTP context manager. In general, the error conditions are caused
by (1) failure to deliver a packet, (2) a change in the maximum allowable packet size imposed by the under-
lying data delivery service, (3) the impending demise of the host, or (4) unacceptable traffic specification
requests. A DIAG packet can never have a set SREQ bit.

The Diagnostic Segment of DIAG packets has three parts: the code field, the val field, and the message
field. The code field specifies a general type of error condition. The val field gives more specific information
about the nature of the error. Values for the code field that are defined for these situations are given in
table 5.

The Receiver action column specifies how the receiver of a DIAG packet with that row’s code value is sup-
posed to react. A “Context Refused” DIAG packet is sent in response to a FIRST packet that was not
accepted. The “Context Abandoned” DIAG packet is used to indicate that the sender’s context is being
aborted, usually because the host is going down. The “Invalid Context” DIAG packet is used when an incom-
ing non-FIRST packet cannot be matched to a context. The “Request Refused” code for DIAG packets is
used for refusing a change in the current service, either by changing the mode bits in the options field or by
sending a TCNTL packet with unacceptable traffic parameters. The “Join Refused” code is used by the mul-
ticast transmitter to deny a request to join the in-progress multicast association. A “Protocol Error” code indi-

Table 5  –  DIAG code values

Code Meaning Receiver action

1 Context Refused Abort context

2 Context Abandoned Abort context

3 Invalid Context Abort context

4 Request Refused Implementor’s discretion

5 Join Refused Abort context

6 Protocol Error Implementor’s discretion

7 Maximum Packet Size Error Fix PDU size or abort context
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cates that the protocol has been violated in some way, such as trying to send fresh data on a closed data
stream. The “Maximum Packet Size Error” indicates either that a sent packet was larger than the receiver’s
underlying data delivery service could handle, or that the receiver’s underlying data delivery service is
changing the maximum size of data it can handle. The maximum size of the Information Segment that the
sender expects to transmit during the lifetime of the association is the value of the val field when the code
is 7 (see the discussion on maxdata in 6.3.4.3, “Traffic field”).

The val values specify more accurately what caused the DIAG packet to be generated. In table 6 is shown
the meanings of the val values and which val values are appropriate for the various code values.

9     Multicast functional specification

XTP multicast provides a powerful mechanism for group communication that supports a data transfer ser-
vice for a one-to-many data flow. A multicast transmitter may send to an arbitrarily large receiver group.
Since this is a transport layer multicast—rather than a data link multicast or broadcast—flow, rate, and error
control procedures are applied to the transmission of arbitrary-size messages to arbitrary-size groups.

Reliable transmission requires transmitter knowledge of the state of the receivers. In unicast, the transmitter
knows that there is only one receiver, so simple techniques can be used to ascertain the receiver’s state. In
multicast, however, the state of all of the receivers must be tracked and resolved into information that the
transmitter can use in its control algorithms. This implies that the transmitter must maintain some knowledge
about the group of receivers.

Table 6  –  Appropriate code/val combinations

val Meaning
codes

1 2 3 4 5 6

0 Unspecified ✓ ✓ ✓ ✓ ✓ ✓

1 No listener ✓

2 Options refused ✓ ✓ ✓ ✓

3 Address format not supported ✓

4 Malformed address format ✓ ✓

5 Traffic format not supported ✓ ✓ ✓

6 Traffic specification refused ✓ ✓ ✓

7 Malformed traffic format ✓ ✓ ✓

8 No provider for service ✓ ✓ ✓

9 No resource ✓ ✓ ✓

10 Host going down ✓

11 Invalid retransmission request ✓

12 Context in improper state ✓

13 Join request denied ✓
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XTP multicast provides the same control algorithms and mechanisms as XTP unicast. The fundamental dif-
ference between multicast and unicast is that there is no notion of duplex data transfer. This is because XTP
does not dictate how data from multiple transmitters should be fused into one data stream. As a conse-
quence, XTP multicast is a simplex data flow from one transmitter to an arbitrary number of receivers. (Refer
to annex E, "Multicast extensions," to see how XTP multicast can be extended to include many-to-one and
many-to-many data flows when assumptions are made about the data flows.)

Association management in multicast is closely related to the management of the group of receivers. As in
unicast, the establishment of a multicast association is the process of discovering receivers. Unlike unicast,
receiver set size may grow or shrink during the lifetime of the association. XTP does not impose policies for
managing the group of receivers, since these are application and interface specific, but rather XTP provides
the mechanisms for admitting, rejecting, and ejecting members whenever a group management policy so
dictates.

This clause first defines the fundamental concepts in XTP multicast, including the context and association
state machines. Next, the procedures for association management are discussed, complete with associa-
tion establishment and termination. There are several termination semantics, and these are given in detail.
The particulars of the flow, rate, and error control procedures, as they apply to a multicast environment, are
discussed.

9.1 Multicast fundamentals

XTP multicast is intended for media that provide a broadcast or multicast facility. This service can be also
extended to non-multicast media via a data delivery service that provides output replication to a set of des-
tinations. Such a replication layer would be considered part of the media-specific encapsulation, and would
be defined as part of the XTP encapsulation. 

XTP multicast refers to a single transmitter with multiple receivers. It provides procedures to transmit a data
stream in sequence order and free of duplicate data from a single XTP context to a set of XTP receiver con-
texts. XTP multicast is not by nature duplex. Whereas both endpoints of an XTP unicast conversation have
a sending and a receiving side for duplex communication, in the multicast case endpoints are one-sided;
receiving endpoints in the one-to-many case cannot send data in the reverse direction. Therefore, there is
a distinction between the multicast transmitter (only the sending side is active) and the multicast receivers
(only the receiving side is active).

Multicast packets obey the same syntax rules as non-multicast packets: the header, the Control Segment,
and the Information Segment are identical. Multicast packets differ from unicast packets in the following
ways:

– All packets in a multicast association have the MULTI bit set, while packets in a unicast association
always have the MULTI bit cleared;

– Packets sent by the multicast transmitter may utilize the group address or an individual receiver’s
unicast address;

– In an established multicast association, control packets sent to the multicast transmitter by the multicast
receivers must use the transmitter’s unicast address;

– All packets sent from the multicast transmitter have the RCLOSE bit set.

All other fields and bitflags defined for unicast transmission are defined for multicast. A receiver should
respond to the various field and bit values are the same way as in unicast, except where explicitly described
in the rest of clause 9.
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Multicast receivers join a multicast association in one of two ways. The first method is when a context listen-
ing on a multicast address receives a multicast FIRST packet. The second occurs when a context sends a
JCNTL packet to the multicast transmitter for an in-progress multicast association, and the transmitter
responds with a JCNTL packet, admitting the context to the group as a multicast receiver.

As contexts are admitted to the receiver group, the multicast transmitter maintains information about all
active multicast receivers in the association. An active receiver in a multicast group is a receiver whose con-
trol information is used by the multicast transmitter when the transmitter runs its control algorithms. The
active receiver set may be a subset of the all of the receivers; the group management policy in use at the
transmitter determines the set of active receivers. Control packets sent by receivers who are not in the active
receiver set will be ignored by the transmitter.

Control packets are issued by multicast receivers in response to receiving either SREQs or DREQs in the
multicast transmitter’s outgoing data stream. These control packets must be sent using the multicast trans-
mitter’s unicast address. For reliable data transmission in multicast mode, a transmitter must positively asso-
ciate incoming control packets with past events if continuous output streaming is desired. This can be
accomplished by matching returned echo values with local sync values. When a multicast receiver receives
a control packet from the multicast transmitter, the same procedures are applied to it as defined for unicast
associations.

Multicast receivers can leave the group by sending a CNTL packet with the END bit set. The multicast trans-
mitter removes the receiver from the group but does not have to close the association, even if that is the last
active receiver in the group. The multicast association is terminated only when the multicast transmitter
sends a packet with the END bit set.

9.2 Multicast addressing

NOTE – Example: Internet Class D addresses, as defined in RFC 1112, are multicast addresses used by IP. To sum-
marize, Class D addresses define a 28-bit space between 224.0.0.0 and 239.255.255.255. Class D also defines a 
mapping to MAC addresses. For 48-bit IEEE-compatible MAC addresses, the low-order 23 bits of the IP address 
are placed in the low-order 23 bits of the Ethernet MAC address 01-00-5E-00-00-00. This means that many Class 
D addresses map onto the same MAC address. For FDDI the mapping is the same.

If IP multicast is used, the Class D address would appear in the dsthost field in the Address Segment, and the RFC 
1112 mapping of that address would appear as the destination MAC address. In this way, a 48-bit IEEE-compatible 
group address can be uniquely mapped back into an Internet Class D address.

9.3 Multicast group management

Multicast group management is concerned with the reliability of a multicast transmission from the viewpoint
of dynamic group membership. The reliability of the multicast association depends on the control algorithms
used in the association and on the group management policy.

9.3.1 General concepts

Conceptually, the XTP multicast transmitter maintains a table with the state information of the active multi-
cast receivers as derived from control packets. The control algorithms running at the multicast transmitter
use the contents of this table while the group management policy determines when and how changes in
membership are handled. The group of active receivers may be a subset of the actual group of receivers.
These active receivers are the ones whose control information is used to drive the control algorithms, while
control information from all other receivers is not used.

XTP multicast is a collection of mechanisms that support group communication. A group management pol-
icy encapsulates how these protocol mechanisms are used. There are three aspects of group communica-
tion where a policy is required:

– Group membership admission:
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– how the multicast transmitter discovers the initial set of receivers;

– how receivers are admitted to the active receiver group;

– how to admit receivers to the receiver set but not to the active receiver group;

– Group membership pruning:

– when to remove a receiver from the active receiver group;

– when to drop a receiver from the receiver set;

– Group reliability:

– when is the active receiver group insufficient.

The application using XTP multicast is responsible for specifying several parameters which control the
behavior of the multicast associations. These include:

– How the initial group of active receivers is compiled;

– The criterion for admission to this active receiver group while the association is in progress;

– The policy for admission to the receiver set even if the receiver is not part of the active receiver group;

– Under what conditions a receiver set is to be removed from the active receiver group, and when a
receiver is to be ejected from the receiver set entirely;

– What is meant by a receiver “falling too far behind” the other receivers.

9.3.2 Group reliability semantics

The term “reliable” must be defined with respect to the integrity of the active receiver set. In general, multi-
cast data structures maintain a set of useful information about each active receiver. The multicast transmitter
sets SREQ in any outgoing packet to force an update of this information.

To determine whether all receivers are synchronized with each other with respect to the data stream, the
multicast transmitter would observe the rseq values in the data structure to verify that all values are within
some user-defined threshold of the multicast transmitter’s last seq value. If an rseq value is identified as
being significantly lower than the multicast transmitter’s seq value, this may indicate a receiver that is signif-
icantly slower than the other members of the group, or a receiver that has exited the group without notifica-
tion.

Suppose a receiver has been identified that has fallen behind in the sequence space. Is the receiver dead,
or just slow? By setting SREQ in an outgoing data packet, the transmitter will request all receivers to
respond, which in turn will permit an update of the active receiver data structure. If all receivers respond (as
can be determined by matching the returned echo value against sent sync values), then the offending
receiver is just slow. If one or more receivers fails to respond, a synchronizing handshake (9.8.2) will assure
that all receivers have had adequate time to respond. A receiver that has not responded within the bounds
of the synchronizing handshake is assumed to be dead.

If the user’s reliability semantics require that all members of the group must remain alive and current, then
the detection of a failed receiver dooms the group’s integrity; the multicast association is then aborted by
the multicast transmitter by sending an END bit to the group (consistent with the requirement to maintain a
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zombie state in the multicast transmitter if it is required that all data up through and including the packet
containing the END bit be delivered reliably).

If the user’s reliability semantics require that only still-functioning members of the group remain current, then
there is an alternative to aborting the group when one receiver fails or falls significantly behind in the
sequence space. The multicast transmitter can, upon detection of a failed or slow receiver, send an END bit
to the unicast address of that particular receiver and remove that receiver’s state information from the data
structure; this effectively removes a receiver from the group, and now the remaining group members may
continue.

The group reliability data structure allows the implementation of k-reliability semantics. Suppose that the
user requires that at least k receivers be operational for the group to continue; by monitoring the cardinality
of the group, the user can assure that this requirement is met. Note that this example of reliability does not
specify the identity of the reliable group members, only their number, so under this definition the group is
intact as long as their are at least k functioning members, regardless of who they are. A more rigorous reli-
ability semantic could be enforced by requiring that not only must k group members be present, but they
must be k specific members.

The user can even impose hybrid reliability requirements on the group. For example, it can require that group
members X, Y, and Z be fully reliable, but impose no such restraint on other group members. By tracking the
group membership data structure, the user can assure that X, Y, and Z are both active and current, and can
abort the group if any of those three receivers fail. Meanwhile, other members can join and leave, but their
presence or absence will have no effect on the total group reliability semantics.

The amount and type of information recorded in the group membership data structure, and the degree to
which that information is exposed to the user, affects the breadth of group reliability semantics that can be
imposed by the user.

9.4 Multicast association management and establishment

Management of a multicast association is similar to management of a unicast association except for two
important distinctions: 1) the multicast association is not symmetric with respect to data transfer, and 2)
group management may require that information be gathered for an arbitrary number of receivers in a group
whose membership may change.

An association is established when one or more listening multicast contexts receives a FIRST packet, and
all participating contexts (one transmitting and one or more receiving) have moved into the active state.
There can be multiple multicast contexts on the same host listening on the same multicast address. An
incoming FIRST packet is matched against all listening contexts to find those that will accept the associa-
tion.

A received FIRST packet, if it is not discovered to be a duplicate for an already active context, is subjected
to a matching algorithm to determine if any listening contexts should get a copy of the FIRST packet. Each
listening context submits an address filter that represents the values of an address that the context is willing
to accept, as well as acceptable traffic shaping parameters and options bits. The FIRST packet’s contents
are compared against each listening context’s criterion for acceptance until all listening contexts have been
examined.

Upon receipt of a FIRST packet, the receiving host takes the following steps:

a) If a full context lookup on this FIRST packet finds an active context, the FIRST packet is a duplicate;
a copy of the FIRST packet should be given to each of the contexts to which this packet belongs, and
each of them should respond to the SREQ and DREQ bits, if set, and accept any additional data
carried within, but no new contexts become active;
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b) If the FIRST packet is not a duplicate, the receiving host performs a series of comparisons to find all
appropriate listening contexts:

1)  The address field within the Address Segment of the FIRST packet is matched against a set of
filters;

2) The service field in the Traffic Specifier segment is matched against the context’s service value: if
the context’s service value is 0, any service field value will match; otherwise the values must match
exactly;

3) The traffic specification values in the Traffic Specifier segment are matched against the traffic
specification acceptable by the context;

4) The settings of the option bits in the options field of the header of the FIRST packet are examined
for acceptability;

c) A copy of the FIRST packet is given to each listening context for which the FIRST packet’s address,
traffic specification, and options are acceptable;

d) Otherwise, the FIRST packet is discarded without reply.

For each listening context that accepts the FIRST packet, an entry for the context is made in the translation
map that will map to this context any incoming packets whose key field is the same as this FIRST packet’s
key field, and whose source host’s address (obtained from the underlying data delivery service) is the same
as this FIRST packet’s source host’s address. This entry is fundamental in the full context lookup, described
next. The packet is given to the found context(s), which has (have) now moved from the listening state to the
active state.

Unlike unicast, listening contexts are not allowed to reject a FIRST packet with a DIAG packet. If a multicast
FIRST packet arrives but fails to meet the criteria set out by the listening context, the context simply ignores
the FIRST packet.

NOTE – Example: A multicast transmitter with unicast host address A elects to initiate a multicast association. For 
purposes of this example, three processes (two on host B and one on host C) anticipate the formation of the multi-
cast group and have already posted a listen on the multicast address. Call these contexts B1 and B2 on host B and 
C1 on host C. Knowledge of the multicast address on which to listen has been provided by some outside agent.

The multicast transmitter sends a FIRST packet with its source address set to be A’s unicast address and with the 
destination address set to be the multicast address. Hosts B and C each see the FIRST packet, compare it against 
the address, service, traffic, and options specified by contexts B1, B2, and C1, and, assuming acceptability, pass the 
FIRST packet to the three awaiting contexts; the translation map in each host associates the key, and unicast source 
address in the FIRST packet with these three contexts so that all future packets with the same key and source 
address will likewise be passed to these receiving contexts.

At this moment, the three contexts become members of the multicast association (because their state has moved 
from listening to active), although the transmitter does not yet know about them. So at this point a multicast associ-
ation has been successfully established, but the multicast transmitter does not know how many active receivers 
there are, nor can it identify any of them uniquely.

9.5 Multicast packet exchanges

XTP multicast distinguishes between transmitter-initiated multicast as an “invitation” to join the multicast
association, and the receiver-initiated join as a form of “polling.”

In transmitter-initiated multicast, the packet exchange begins with a FIRST packet sent to the group address
soliciting receivers. A receiver sends a JCNTL packet back to the transmitter, requesting to join the multicast
association. The transmitter decides on the receiver, and if it is accepted, replies with a JCNTL packet telling
the receiver that (1) it is now part of the association, and (2) what its multicast receiver identifier is.
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In a receiver-initiated join, a potential receiver sends a JCNTL packet to the group address requesting
admission from the transmitter. If accepted, the transmitter replies with a JCNTL packet telling the receiver
both pieces of information listed in the previous paragraph.

9.5.1 Notation

See table 7, "Multicast transmission notation."

1) The Kx forms (Kg, Kr, Ki) are used in outgoing packets when there is not yet (or will never
be) information about a return key, so a full context lookup must be forced at the destination.
The Kx' forms (Kg', Kr', Ki') are used whenever possible, to permit abbreviated lookups.

2) The Transport Address values [TAg(m), TAt(u), TAr(u)] will be carried in the destination
address and source address fields of the Address Segment of a JCNTL packet. They will
have values appropriate to the Address Format in use (see 6.4.1, “Address Segment”).

3) The Delivery Service Address values [Ag(m), At(u), Ar(u)] will be carried in the destination
address and source address fields of the Delivery Service packets that encapsulate the XTP
packets. They will have values appropriate to the Address Format used by the Delivery Ser-
vice.

Table 7  –  Multicast transmission notation

Notation Meaning

Kg1) Transmitter's local key, for the multicast group

Kg' Transmitter's local key, as a return key

Kr Receiver's local key

Kr' Receiver's local key, as a return key

Ki Key assigned by the transmitter, to uniquely identify receiver i

Ki' The same, as a return key

TAg(m) 2) The multicast Transport Address of the group

TAt(u) The unicast Transport Address of the transmitter

TAr(u) The unicast Transport Address of the receiver

DA The destination address field in an Address Segment

SA The source address field in an Address Segment

Ag(m)3) The multicast Delivery Service address of the group (probably a 
network address, but possibly a MAC address in restricted environ-
ments)

At(u) The unicast Delivery Service address of the transmitter

Ar(u) The unicast Delivery Service address of the receiver

dest The destination address used by the delivery service

src The source address used by the delivery service
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9.5.2 Transmitter-initiated multicast

The transmitter-initiated group formation proceeds as follows: 

a) A FIRST packet with the following fields is sent from the transmitter to the group:

– dest = Ag(m);

– src = At(u);

– key = Kg;

– DA = TAg(m);

– SA = TAt(u);

– initial Tspec.

b) When this FIRST packet arrives at a receiving host, the mapping (At(u),Kg)—>(Kr1,Kr2,...) must be
added to the translation table, where (Kr1,Kr2,...) denotes the contexts listening at Transport Address
TAg(m) that also satisfy the acceptance criteria as listed in 9.4, “Multicast association management
and establishment.”

9.5.2.1 Unreliable groups

If SREQ is not set in the FIRST packet, then the transmitter does not care about receiver membership, and
the receiver should be silent. (This is exactly the same as the requirement in unicast that the receiver be
silent if the FIRST packet does not have SREQ set.) However, this does not prevent the transmitter from
using SREQ/DREQ in the future to gather responses from listening receivers, and using these responses
to advance its outgoing sequence numbers. These responses will of necessity be returned with key=Kg'; the
transmitter will need some algorithm for coalescing the responses. Some level of error detection and cor-
rection is therefore still possible, but reliable reception by a defined group of receivers cannot be guaranteed.

9.5.2.2 Reliable groups

If SREQ is set in the FIRST packet, the FIRST packet is an “invitation” to join the group. The required
response is a “JCNTL request packet,” with the following fields:

– dest = At(u);

– src = Ar(u);

– key = Kg';

– alloc = the current window size for this receiver;

– xkey = Kr';

– DA = TAg(m);

– SA = TAr(u);

– response Tspec.
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Note that the initial window size for this receiver is also the alloc value, because the starting seq value is
always zero.

Although this packet is a “response” to the SREQ in the FIRST packet, which would normally mean that
SREQ should not be set, it is also a “request” to join the group. The receiver must protect this request with
WTIMER. (Recall that we are dealing with a reliable group.) Therefore, to ensure completion of the packet
exchange for association establishment, it is required that this packet have SREQ set.

After the sequence (FIRST packet, JCNTL request packet) has completed, the transmitter has the key (Kr')
to be used when sending to the new receiver, and the Transport level address for this receiver, so the trans-
mitter knows uniquely who the new member of the group is.

Since a packet sent with key=Kr' may be returned as a DIAG packet with key=Kr, the transmitter should add
the mapping (Ar(u),Kr)-->Ki to its translation table.

The transmitter must now issue a “JCNTL response packet,” to complete the exchange. If it wishes to con-
tinue to uniquely identify each receiver, it allocates a key Ki from its key space, and communicates this to
the receiver:

– dest = Ar(u);

– src = At(u);

– key = Kr';

– xkey = Ki';

– DA = TAr(u);

– SA = TAt(u);

– Tspec.

The Tspec can be the Null Traffic Specifier (tformat=0) to indicate “no change” when it occurs in a control
packet. This JCNTL response packet must not have SREQ set. 

When the JCNTL response packet arrives at the receiving host, with xkey=Ki', then the receiving host must
record Ki' as the key to be used when sending packets to the transmitter, and should add the entry
(At(u),Ki)-->Kr to its translation table. This enables correct delivery of a future DIAG packet with key=Ki.

If the contents of the DA field in the JCNTL response packet do not match the unicast Transport Address
value associated with context Kr, then a protocol error has occurred. This should be signaled with a DIAG
packet containing key=Kr, code = 6 (Protocol Error), and val = 14 (Invalid Address).

If the transmitter does not wish to continue to uniquely identify each receiver, it sends the same JCNTL
response packet, but places Kg' in the xkey field. In this case there is no Ki allocated, no record of Kr, and
no need to record a mapping between (Ar(u),Kr) and Ki.

9.5.2.3 Subsequent packet exchanges

a) Packet sent from the transmitter to the whole group:

– dest = Ag(m);

– src = At(u);
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– key = Kg.

NOTE — Because the target contexts will have different keys, it is always necessary for the receiving host to
use a full context lookup with the pair (At(u),Kg) to find the appropriate contexts (Kr1,Kr2,...) on a target
machine.

b) Packet sent from the transmitter to a specific receiver:

– dest = Ar(u);

– src = At(u);

– key = Kr'.

NOTE — This uses abbreviated context lookup at the receiving host, to map to a single receiver context.

c) Packet sent from a receiver to the transmitter:

– dest = At(u);

– src = Ar(u);

– key = Kg' or Ki'.

NOTE — Here the receiver uses Kg', the key that it learned from the initial FIRST packet, or Ki', the key that it
learned from the second JCNTL. The transmitting host uses abbreviated context lookup to map to the
appropriate entity.

9.5.3 Receiver-initiated multicast

When a receiver wishes to join an existing multicast group, the following sequence is used. A JCNTL request
packet with the following fields is sent from the receiver to the transmitter:

– dest = Ag(m);

– src = Ar(u);

– key = 0;

– alloc = window size;

– xkey = Kr';

– DA = TAg(m);

– SA = TAr(u);

– offered Tspec.

This JCNTL request packet must have SREQ set (to correspond with the JCNTL request packet described
in 9.5.2.2, “Reliable groups”). The transmitter responds with a JCNTL response packet containing

– dest = Ar(u);

– src = At(u);
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– key = Kg;

– seq = join point;

– xkey = Ki' or Kg';

– DA = TAr(u);

– SA = TAt(u);

– response Tspec.

As with transmitter-initiated multicast, if the transmitter wishes to uniquely identify each receiver, it allocates
a key Ki from its key space, and sends this as Ki' in the xkey field. It should also add the mapping
(Ar(u),Kr)-->Ki to its translation table.

If it does not wish to uniquely identify joining receivers, then it sends Kg'. In this case there is no Ki allocated,
no record of Kr, and no need to record a mapping between (Ar(u),Kr) and Ki.

When the JCNTL response packet arrives, if there are no other contexts on the host associated with this
group, the full context lookup will fail [because the host did not previously know the (At(u),Kg) pair]. The host
will then match the destination address [TAr(u)] against listening contexts, and will find Kr. It will make an
entry translating (At(u),Kg) to Kr.

If there are previously-enrolled members of the group on the host, the full context lookup will not fail, but the
transport address [TAr(u)] will not be in the set of contexts indexed by the translation table, so an additional
entry will need to be made once the context Kr has been found. If TAr(u) is already in the set of contexts
indexed by the translation table, the JCNTL is a duplicate.

If no match can be found for TAr(u), then the context that originally issued the JCNTL request packet has
vanished. This should be signaled with a DIAG packet containing key=Kg', code=3 (Invalid context), and
val=0 (Unspecified). This can be handled at the transmitter in various ways, depending on the reliability
semantics of the group. If the transmitter does not care, the DIAG can be ignored. If the transmitter has a
set of one or more Kr' values for the receiving host, it can use these values to single out the departed con-
text, and then act in accordance with the improved information.

(Note that key=Kr' cannot be used in the JCNTL response packet, even though it is known to the transmitter,
because Kg must be communicated, even if Ki' is to be used for reverse traffic. In addition, the use of Kg
triggers the update to the translation table, which otherwise would not happen if the packet were handed
directly to the context Kr'.)

As with transmitter-initiated multicast, if the arriving JCNTL response packet has xkey=Ki', then the receiving
host should add the entry (At(u),Ki)-->Kr to its translation table. This enables correct delivery of a future
DIAG packet with key=Ki.

If the JCNTL response packet containing Kg is lost, it will normally be recovered when the WTIMER expira-
tion at the receiver causes the JCNTL request packet to be re-issued. However, some packets with key=Kg
may arrive at the receiver; these will be ignored, but will be recovered once the JCNTL response packet is
resent. Finally, receipt by the receiver of a packet with key=Kr', before the receipt of the (sent or resent)
JCNTL response packet will confuse the receiver, because it will know neither Kg' nor Ki'. In this case the
JCNTL request packet must be re-issued, even if WTIMER has not expired. (It is clear that at least one round
trip time has elapsed!)
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9.5.4 Traffic specification negotiation

As with the unicast association, the traffic specification can be negotiated. There are several differences in
the way the negotiation takes place in multicast associations because of the unidirectional flow of data, the
fact that the traffic shape will necessarily be the same for all of the multicast receivers, and the fact that mul-
ticast receivers are not allowed to reject a traffic specification with a DIAG packet.

When the FIRST packet is sent to the initial group of receivers, the FIRST packet carries a Traffic Specifier
indicating the parameters to be used for the outgoing data stream. These receivers filter on this specifica-
tion. If the FIRST packet has the SREQ bit set, those receivers that accept the specification as is or with
modification respond with a JCNTL packet. Those receivers that do not accept the specification drop out of
the group, either silently, or by sending a CNTL packet with the END bit set (9.7.1). DIAG packets can not
be used to drop out of the multicast group.

During an attempt to join an in-progress association, the JCNTL request packet is sent to the multicast group
address with a Traffic Specifier filled in with the parameters the receiver would like to see from the transmit-
ter. If the transmitter finds these parameters acceptable, or if the transmitter modifies them, the multicast
transmitter will respond with a JCNTL response packet as described in 9.5.3, “Receiver-initiated multicast.”
The transmitter rejects this attempt to join by using a DIAG packet with code and val as described in 9.8.3.

At any time during the multicast association, the multicast transmitter or any one of the multicast receivers
can renegotiate the traffic specification by using the rules for traffic specification negotiation described in
8.2.5. If the change is initiated by the multicast transmitter, those receivers that do not accept this change
drop out of the multicast group (9.7.1).

9.6 Special cases for FIRST and JCNTL packets

There are numerous situations in which packet exchanges for joining a multicast group are complicated by
lost packets or simultaneous events. The following paragraphs detail XTP behavior in these cases.

9.6.1 Simultaneous FIRST and JCNTL (key=0) packets

It is possible for the transmitter-initiated and the receiver-initiated sequences to begin simultaneously. In
principle, it would be possible for an implementation to drop one of the extraneous packets. However, two
different implementations might end up dropping both of the packets, so the association would never get
established. Implementations are therefore required to respond to both, with the expectation that the extra
JCNTL packets that result will be dropped by the duplicate detection mechanisms, once it is assured that
the association has been established. The details are as follows:

During a transmitter-initiated sequence, once the FIRST (key=Kg) packet has been sent, the transmitter is
expecting a JCNTL (key=Kg') as a reply. If a JCNTL (key=0) is received instead, the action to be taken is a
combination of the action for JCNTL (key=0) and the action for JCNTL (key=Kg'): the response of the joining
receiver must be added to the set of responses that will be communicated to the transmitting user once the
criteria for the new group have been met (see 9.3, “Multicast group management”), and the transmitter must
respond to the receiver using the normal response to a JCNTL (key=0) packet.

During a receiver-initiated sequence, once the JCNTL (key=0) packet has been sent, the receiver is expect-
ing a JCNTL (key=Kg). If a FIRST packet arrives, it should be responded to by issuing a JCNTL request
packet with key=Kg'.

9.6.2 Issuing duplicate FIRST and JCNTL packets

Various implementations may have different ideas of how hard they will work to ensure that the criterion for
group formation is met. (Example criteria would be “at least K receivers” or “as many receivers as can be
found within M seconds.”) One mechanism for ensuring that as many potential receivers as possible are
attracted to the group is to deliberately send duplicate FIRST packets upon expiration of the WTIMER that
was set when the SREQ was included in the FIRST packet. While this is permitted, it is important that the
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transmitter be “well-behaved.” Therefore, it is required that the transmitter use a variation of the Synchroniz-
ing Handshake to achieve this—specifically, it is required that the spacing between duplicated FIRST pack-
ets be backed off exponentially, and that the repetitions be limited by “retry_count” or CTIMEOUT (or both).
Once this period of solicitation has completed, the group must be considered to be formed (or the associa-
tion must be aborted), and no further FIRST packets may be sent. 

Similarly, in a receiver-initiated join, the joining receiver is permitted to deliberately send duplicate JCNTL
(key=0) packets after its WTIMER expires, but must also be “well-behaved”; the receiver is required to use
a variation of the Synchronizing Handshake, as outlined in the previous paragraph.

9.6.3 Responding to duplicate FIRST packets

In the unicast case, a receiver is required to respond (using CNTL or TCNTL) to a duplicate FIRST packet
containing SREQ or DREQ. While this is still true, in general, for the multicast case, because the JCNTL
request packet from a joining receiver may have been lost, it is not necessary to force the issuing of a JCNTL
response packet if the receiver is already in possession of Ki'. In this case, the JCNTL request packet should
be re-issued, but without the SREQ bit being set. It is not acceptable to ignore the duplicated FIRST packet,
because the formation of the group may depend on getting responses from all members of the group, with
all responses having the same ECHO value.

9.6.4 Late JCNTL (key=Kg') packets

After a group has been formed, a (late) JCNTL (key=Kg') packet may arrive. This arrival should be handled
as if the receiver had issued a JCNTL (key=0) packet. The normal JCNTL response packet should be sent
to the receiver.

9.6.5 Minimizing packets with key=Kg' when Ki' has been assigned

The flexibility to use Kg' or Ki' in the JCNTL response packet permits a wide range of “reliability policies” to
be implemented. If the transmitter chooses to assign unique Ki values to each receiver, then the expectation
is that the receivers will respond using key=Ki'. However, there are a number of cases where, due to lost or
delayed packets, a particular receiver may issue a packet with key=Kg', even after the transmitter has
instructed it to use key=Ki'. The transmitter must be prepared to deal with these packets. To minimize the
occurrence of unintended packets with key=Kg', two procedures are recommended:

– If a receiver issues a JCNTL request packet, it should not issue any other packet type until the JCNTL
response packet has been received. (In effect, the JCNTL request, JCNTL response sequence is
similar to a synchronizing handshake initiated by the receiver.)

– If a multicast FIRST packet has SREQ set, no user data should be sent until the group has been
formed. (This is equivalent to forcing this first exchange to be a synchronizing handshake.)

9.6.6 Ki values must be persistent

There are a number of situations where a receiver believes that it is a member of a group, while the trans-
mitter believes that it has dropped this receiver from the group. (For example, a CNTL packet containing the
END bit may have been sent from the transmitter to a receiver, and subsequently lost.) Given that packets
will continue to flow in the association, and that the dropped receiver will continue to respond when the
transmitter requests the state of the group, the unicast rules for zombie state are inadequate. Therefore, if
Ki values have been assigned, it is required that a transmitter maintain at least minimal records of all receiv-
ers that have ever been part of the association. Records of receivers that have been silenced must be put
into zombie state, until the entire association is terminated, so that stray packets from supposedly dropped
receivers will trigger a repeat of the necessary action. (This implies that Ki values will never be reused during
the lifetime of an association.)
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9.7 Multicast termination

Individual receivers may leave a multicast session or the transmitter may terminate specific associations or
the entire group session.

9.7.1 Individual receiver termination

There are three ways that a multicast receiver can depart a multicast association: 

9.7.1.1 Voluntary exit

When a receiver is no longer interested in the multicast association, the receiver voluntarily leaves the mul-
ticast association by sending a CNTL packet with the END bit set to the multicast transmitter. The multicast
receiver then follows the same rules as any context sending an END bit: the context goes into a zombie state
for CTIMEOUT seconds. The multicast receiver in the zombie state responds only to packets from the mul-
ticast transmitter sent to it on the receiver’s unicast host address, where the packet contains a return key in
the key field. The only valid response is for the zombie receiver to retransmit a CNTL packet with the END
bit set. The multicast transmitter updates the active receiver set as receivers leave the group.

9.7.1.2 Forced exit

A multicast receiver can be forced to exit the multicast association. Any time a multicast receiver receives a
packet with the END bit set, the receiver must immediately abandon the multicast association and go qui-
escent, as per the rules for receiving an END bit. The multicast transmitter updates the active receiver group.
If the packet with the END bit is not received by the receiver, that receiver may still send control packets back
to the transmitter. The multicast transmitter can ignore these control packets or send an additional control
packet with the END bit set.

9.7.1.3 Silent exit

If a multicast receiver in the active group fails to respond to status requests, the multicast transmitter will
eventually enter a synchronizing handshake as described in 9.8.2. If the multicast receiver fails to respond
to this handshake, the multicast transmitter removes the receiver from the active receiver group.

9.7.2 Multicast group termination

In order for a multicast group to be terminated, all of the active multicast receivers must be released, and
the multicast transmitter must send a packet with the END bit set. A context in a healthy association is closed
by completing the packet exchanges with WCLOSE, RCLOSE, and END bits. Just as with unicast, closure
is achieved with various degrees of gracefulness, depending on the bits used and the order in which they
are set.

The WCLOSE bit is set when the multicast transmitter has completed the transmission of all data in its out-
going data stream. Once the WCLOSE bit is set in an outgoing packet, all subsequent outgoing packets,
except retransmitted DATA packets, must carry the set WCLOSE bit.

The RCLOSE bit has to be set in each outgoing packet from the sender, starting with the FIRST packet. This
indicates that the sender’s incoming data stream is closed, and the multicast association will be inherently
simplex. As a consequence, all packets sent from multicast receivers will have the WCLOSE bit set.

The multicast receivers set their RCLOSE bit only after the receipt of a packet with the WCLOSE bit set.
After a WCLOSE is received, the error control procedures must ensure that all data on the incoming data
stream have been received, according to the error control parameters. Once the error control procedures
have been satisfied, the RCLOSE bit must be sent in the next and all subsequent outgoing packets.
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The END bit sent from the multicast transmitter indicates the end of the association. The packet carrying the
END bit can be multicast to the whole group, or sent via a unicast address to a specific receiver. The multi-
cast association is terminated only when the multicast transmitter multicasts a packet with an END bit set.

A multicast transmitter, after sending the END bit, must wait in a zombie state for a duration of CTIMEOUT.
This is to eliminate connection hazards resulting from the case where the packet carrying the END bit is lost;
if any of the multicast receivers ask for a retransmission, the host with the now-quiescent multicast transmit-
ter would respond with a DIAG, and the receiver would not know if the connection was lost or finished grace-
fully. This is avoided by maintaining a zombie context with at least enough state information to respond to a
retransmission request. For situations where the hazard will not arise, or the users do not care, the CTIM-
EOUT can be set to zero, effectively eliminating the zombie state.

9.7.2.1 Abbreviated graceful close

This is the standard closing procedure for multicast. As depicted in figure 34, Context A is the multicast
transmitter, and Context B, Context C, and Context D are the multicast receivers. All packets originating at
Context A have the RCLOSE bit set, and all packets originating at receivers B, C, and D have bit WCLOSE
set. Context A initiates the close by setting the WCLOSE bit in an outgoing packet. This packet is received
at Contexts B, C, and D. Each receiver will respond with a packet that has bit RCLOSE set. The multicast
transmitter has to collect responses from all active multicast receivers B, C, and D carrying the RCLOSE bit.
After that, Context A sends a packet with all three bits WCLOSE, RCLOSE, and END set to end the asso-
ciation.

9.7.2.2 Abortive close

Sending the END bit from a multicast transmitter at any time during the life of the association aborts the
association, regardless of the state of its multicast data stream. Sending the END bit from a multicast
receiver at any time during the life of the association only serves to remove the receiver from the list of active
receivers.

WCLOSE|RCLOSE

WCLOSE|RCLOSE|END

Context A Context B

Figure 34  –  Abbreviated graceful close

Context C Context D

WCLOSE|RCLOSE

WCLOSE|RCLOSE

WCLOSE|RCLOSE
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9.8 Flow, rate, and error control

The multicast transmitter obeys the same rules for flow control, rate control, and error control as a unicast
sender. To summarize: the multicast transmitter begins with default or inherited values for allocation, rate
control, and the wait interval. As the sender adds SREQ or DREQ to outgoing DATA or control packets,
receivers respond with control packets, which contain new values for the flow, rate, and error control algo-
rithms. The sender also periodically updates the round-trip time estimate by observation. Thus, the packet
exchanges carrying flow control and rate control parameters between the sender and receivers are identical
to those between a sender and a single receiver.

The only consideration specific to multicast, however, is that the multicast transmitter must gather control
information from the group of multicast receivers. Each receiver responds to status requests with control
packets. The values for the flow, rate, and error control algorithms must be resolved such that the values for
rseq and alloc (from any control packet), the effective rate and burst (possibly from a TCNTL packet), and
nspan and spans (for ECNTL packets) are aggregated from the control packets received from the known
group of receivers. How these values are aggregated from the receiver group is implementation, and pos-
sibly application, specific, and is not defined by XTP.

As in the unicast case, multicast error control is based on the exchange of information regarding lost or dam-
aged data and the retransmission of this data. Each packet is examined for damage by performing a check-
sum, either over the header only or over the whole packet, depending on whether NOCHECK is set. Lost
data are detected and recovered using an acknowledgment and retransmission procedure. The loss of a
status request is detected by a timer; recovery in this case starts an exchange of packets designed to resyn-
chronize the endpoints of the association. Notification of other error conditions using DIAG packets, how-
ever, is allowed only if the DIAG packet can be sent using a unicast host address as the destination and a
return key in the key field.

9.8.1 Acknowledgment and retransmission

The same error control procedures defined for unicast associations are available in multicast mode. If the
NOERR bit is set, the multicast receivers apply the standard algorithm: all sender SREQ and DREQ
requests are acknowledged with CNTL packets with the rseq value set to the highest sequence number
received. If NOERR is not set, a receiver reports rseq, nspan, and spans in ECNTL packets according to
the normal unicast rules and reports its state to the sender in control packets.

If error recovery is enabled, the values for the error control algorithm must be resolved such that the worst
case values for retransmission are taken from the set of received control packets from the receivers. This
means that the multicast transmitter retransmits all of the lost data reported in the set of control packets from
the receivers.

The rules for use of the FASTNAK bit in the multicast case are the same as the unicast case except that the
multicast association has one data stream, so only the multicast transmitter can set the FASTNAK bit for the
multicast association. This causes the receivers to generate ECNTL packets as soon as a gap in the data
stream is noticed.

9.8.2 Synchronizing handshake

A synchronizing handshake in multicast, as in unicast, serves to establish a point in the association when
each participant has up-to-date status information. If the synchronizing handshake is initiated by the multi-
cast transmitter, the transmitter must ensure that all of the receivers have completed the synchronizing
handshake before the transmitter can quit the handshake. Those receivers who do not complete the syn-
chronizing handshake when the retry count is exceeded or the CTIMEOUT timer expires are removed from
the transmitter’s active receiver group. The exponential back-off algorithm reflects this fact as follows:

a) Load the CTIMEOUT timer with its initial value, reset the retry_count to its initial value, and set an
exponential backoff variable K to 1.
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b) Send a control (CNTL, ECNTL, or TCNTL, as appropriate) packet with the SREQ bit set, and save the
sync value from that packet in the variable saved_sync.

c) Load the WTIMER with K times a smoothed round-trip time estimate (see the implementation note in
6.3.1.3).

d) If a control packet is received from each active receiver containing echo fields that match the value of
saved_sync for all received control packets, then the synchronizing handshake is complete; stop the
CTIMEOUT and WTIMER timers.

e) If the WTIMER expires before the conditions in step “d” are satisfied, decrement the retry_count by 1,
multiply K by 2, and go to step “b.”

f) If either retry_count equals 0 or the CTIMEOUT timer expires, either remove these receivers who
failed to respond or abort the multicast association.

NOTE – Implementation: “Slotting” is a technique that imposes a random delay at the receivers before sending 
SREQ-induced control messages. There are many techniques for determining the slot times and for selecting a 
transmission slot. For example, the low-order bits of the local MAC address can be used to select a slot. The exact 
method is implementation-dependent.

With slotting, the number of control messages is distributed over time rather than concentrated at once. This 
enhances performance because it avoids an instantaneous increase in network offered load (also called a “control 
packet implosion”).

A multicast receiver conducts a synchronizing handshake with the multicast transmitter in exactly the same
way that a unicast synchronizing handshake is conducted. When a multicast transmitter receives a packet
with the SREQ or DREQ bit set, the control packet sent in return may be multicast to the group or simply
sent to the receiver requesting the status via its unicast address.

9.8.3 Error notification

Error notification in the form of DIAG packets is allowed in multicast associations only if the DIAG packet is
generated by a context. Also, a DIAG packet must never be generated in response to packets sent on the
multicast address. These two rules specifically disallow rejections of a multicast FIRST packet. 

The multicast transmitter may reject the JCNTL packet by sending a DIAG packet back to the requesting
receiver using the requester’s unicast address and its return key, and the MULTI bit must be set. The JCNTL
packet is rejected by using a DIAG packet whose code value is 5, “Join Refused.” There is a hierarchy of
rejection reasons, as indicated by the val value:

a) failure due to the service field:

– val 8: “No provider for service”;

b) failure due to the Traffic Segment:

– val 5: “Traffic format not supported”;

– val 6: “Traffic specification refused”;

– val 7: “Malformed traffic format”;

c) failure due to the options bits:

– val 2: “Options refused”;
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d) failure due to group management policy:

– val 13: “Join request denied.”

If none of these reasons apply, the rejection should be done using a DIAG packet with code value 5 and val
value 0, “Unspecified.”

A DIAG intended for a specific context must be sent using a unicast address and a return key in the key field.
DIAG packets, as with all packets in a multicast association, carry the MULTI bit set. The DIAG packet “Con-
text Abandoned, Host going down,” may be sent on the multicast address only if the host going down is the
multicast transmitter.

9.9 Key management for reliable groups

Clauses 9.9.1and 9.9.2 provide further insight into key management for multicast associations with fully
reliable groups. Also presented is the progress of the knowledge gained during the packets exchanges, the
keys to be used while sending information and the keys to be expected in arriving packets.

9.9.1 Transmitter state diagram

Figure 35 displays a state diagram and key exchanges for the transmitter. A “+” signifies an input and a “–”
signifies an output. Transitions that definitely take place are shown with continuous line and transitions that

Figure 35  –  State diagram for the transmitter's key exchanges
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may take place at some time, but need not ever occur, are shown with dashed line. Labeled states in the
diagram represent the progress in the knowledge of the various keys.

In the beginning, for a transmitter-initiated exchange (column TxI), the transmitter knows Kg, and sends it in
a FIRST packet. This progresses the exchange to state TA. When the transmitter receives a JCNTL request
packet from a joining receiver, it learns Kr', assigns Ki, and sends a JCNTL response packet containing
xkey=Ki'. The transmitter records the translation (Ar(u),Kr)-->Ki to permit correct processing of returned
DIAG packets. This progresses the exchange to state TB.

In state TB, the transmitter will use key=Kr' to single out the receiver, and key=Kg to send to the whole group.
Since the JCNTL response packet may be lost, the only packet type that can safely be sent to the receiver
in this state is a (repeated) JCNTL(Kr',Ki'). The transmitter expects packets to be returned to it containing
key=Ki'. However, it is vulnerable to packets with key=Kg', until it receives any packet with key=Ki', at which
time it knows that the receiver has recorded the value of Ki'. This progresses the exchange to state TC. (It
is likely that this transition will take place naturally, when the receiver responds to a packet with key=Kg and
SREQ set.)

For a receiver-initiated exchange (column RxI), the transmitter learns Kr' when the (unsolicited) JCNTL
request packet arrives. It sends a JCNTL response packet containing key=Kg and xkey=Ki'. The transmitter
records the translation (Ar(u),Kr)-->Ki to permit correct processing of returned DIAG packets. This
progresses the exchange to state TD. The rest of this exchange is identical to the steps for a transmitter-
initiated exchange, except that the only packet that can safely be sent in state TD is a repeated
JCNTL(Kg,Ki').

Finally, for any receiver-initiated case, if the JCNTL response packet is lost, the receiver becomes a member
of the multicast group without knowing it. It has not learned Kg, so it will not receive any packet sent to the
group, and will not reply to any group synchronization. If it does not achieve membership in the association

Table 8  –  Transmitter key knowledge

State Kg Kg' Ki Ki' Kr Kr'

TA S E - - - -

TB S V K E P S

TC S P K E P S

TD S V K E P S

SYMBOLS MEANING

- the transmitter has no knowledge of this key

E packets are expected to arrive with this key

K this key is known to the transmitter, but will never be used

P it is possible that a packet will arrive with this key, but only under 
error situations

S this key will be used to send packets

V packets are not expected to arrive with this key, but the transmitter 
is nevertheless vulnerable to them (especially if the packet telling 
the receiver to use this key is lost)
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quickly enough (e.g., by repeating the JCNTL(key=0) packet), the transmitter may remove it from the group.
This may result in the receiver actually “rejoining” the group rather than “joining” the group.

The knowledge about keys at the transmitter is summarized in table 8.

9.9.2 Receiver state diagram

Figure 36 displays a state diagram and key exchanges for the receiver. The symbols and column headings
have the same meanings as those in figure 35.

For a transmitter-initiated exchange (column TxI), the receiver moves to state RA as a result of a “listen”
primitive. When the FIRST packet arrives, the receiver issues a JCNTL request packet with xkey=Kr'. The
receiver records the translation (At(u),Kg)-->(Kr1,Kr2,...) to permit correct processing of incoming packets
addressed to the group. This progresses the exchange to state RB.

At this point, the receiver expects packets to arrive with key=Kg (if intended for the whole group), or with
key=Kr' (if intended for the individual receiver). The receiver will use Kg' to send packets to the transmitter.
When the JCNTL response packet arrives, the receiver learns from the xkey field its new key assignment
(Ki'), and will use this in future to send packets to the transmitter. The receiver records the translation
(At(u),Ki)-->Kr to permit correct processing of returned DIAG packets. This progresses the exchange to
state RC.

For a receiver-initiated exchange, the receiver moves to state RD as the result of a “join” primitive. It issues
a JCNTL request packet with xkey=Kr'. When the JCNTL response packet arrives, the receiver learns the

Figure 36  –  State diagram for the receiver's key exchanges
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group key (Kg), and its individually assigned key (Ki'). This progresses the exchange to state RC. The
receiver will expect packets to arrive with key=Kg (if intended for the whole group), or with key=Kr' (if
intended for the individual receiver). The receiver will use Ki' to send packets to the transmitter. The receiver
records the translation (At(u),Ki)-->Kr to permit correct processing of returned DIAG packets.

The knowledge about keys at the receiver is summarized in table 9.

10     Encapsulation

An encapsulation procedure specifies how to incorporate a protocol data unit (PDU) from one layer within
the PDU of a lower layer. An XTP packet is contained, or encapsulated, within a lower layer frame, and that
lower layer becomes the data delivery service for the XTP packet. The underlying data delivery service
employed by XTP, and into whose frames XTP packets will be encapsulated, must provide three things:

– end-to-end delivery of the XTP packet;

– some validity assurance over the encapsulating frame;

– the source host addresses used by the service.

The service must provide end-to-end delivery since XTP is a transport layer protocol without routing capa-
bilities. If XTP is used in an internet environment, XTP’s underlying data delivery service must be a network
layer protocol. However, XTP may be used in an environment where routing services are not needed; in this
case XTP can be interfaced directly over a MAC or AAL layer protocol, and XTP packets encapsulated
directly into those frames. Encapsulations for both of these environments are given in clause 10.

1) Kr may remain unassigned until the FIRST packet arrives (transition to state RB)

Table 9  –  Receiver key knowledge

State Kg Kg' Ki Ki' Kr Kr'

RA - - - - K1) -

RB E S - - K E

RC E K P S K E

RD - - - - K E

Symbol Meaning

- the receiver has no knowledge of this key

E packets are expected to arrive with this key

K this key is known to the receiver, but will never be used

P it is possible that a packet will arrive with this key, but only under 
error situations

S this key will be used to send packets
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The source host addresses are used by XTP’s full context lookup procedure (see 8.2.2). The source address
must uniquely identify the sending host for the full context lookup procedure to work.

NOTE – Implementation: An XTP packet and its internal segments are defined on 8-byte boundaries in host memory 
so that computers can access protocol control fields without incurring the overhead of crossing word boundaries. In 
order to achieve this alignment in systems that represent an encapsulation frame in contiguous memory, the frame 
should be offset in memory to account for various misaligned frame header sizes.

10.1 Ethernet encapsulation

The packet format for XTP implementations that are interfaced directly to an Ethernet is also shown in
figure 37. The DestAddr and SrcAddr fields are the 6-byte physical address of the Ethernet device. The type
field is used to determine the client protocol for which this frame is destined, and consequently provides a
means for demultiplexing Ethernet frames to various higher layer protocols. (IEEE 802.3 does not have the
type field, so those frames need LLC information to demultiplex them.) The Ethernet type for XTP packets
is 0x817D.

10.2 LLC encapsulation

XTP encapsulation for the IEEE 802.2 LLC environment follows the guidelines established in RFC 1042
“Standard for the Transmission of IP Datagrams over IEEE 802 Networks,” which uses the Sub-Network
Access Protocol (SNAP), IEEE Standard 802.1, for identifying private protocols that use the services of
802.2. The format for this encapsulation is shown in figure 38.

In this encapsulation, the destination and source service access point fields, DSAP and SSAP, are both
assigned the decimal value 170 to indicate that the SNAP header is present. The control field value is 3,
indicating “unnumbered information.” The organization code field OrgCode is assigned the value 0, which is
the code assigned to Xerox Corporation. The type field is the same as for Ethernet (0x817D).

10.2.1 FDDI encapsulation

In general, encapsulating an XTP packet into an FDDI frame follows the guidelines established in RFC 1103
“A Proposed Standard for the Transmission of IP Datagrams over FDDI networks.” The FDDI header has
three fields, a frame control field (FC), the destination address (DestAddr) and the source address
(SrcAddr). The FC field contains information about this MAC frame, including rudimentary priority informa-
tion, the address length, and what kind of data is present in this frame (LLC data or MAC control). The
address fields can be either 16 or 48 bits long, and represent the physical addresses of the FDDI devices
in the destination and source hosts.

10.2.2 IEEE 802.5 Token Ring

Encapsulation for IEEE 802.5 Token Ring is similar to the encapsulation for FDDI frames in that it uses LLC
and SNAP headers in the same manner as FDDI. The access control field (AC) contains the priority and

XTP Packet

MAC Frame

Ethernet TrailerEthernet Header

Type (2)DestAddr (6) SrcAddr (6)

Figure 37  –  Ethernet encapsulations
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reservation bits that are used in Token Ring’s priority reservation access mechanism. The frame control field
(FC) indicates whether the data contained within is LLC data or a MAC control frame. The DestAddr and
SrcAddr fields are the 6-byte physical address of the Token Ring device.

10.2.3 ATM Adaptation Layer 5

Encapsulation for ATM AAL5 follows the guidelines put forth in RFC 1483, “Multiprotocol Encapsulation over
ATM Adaptation Layer 5.” Described in 8.1, “Protocol fundamentals,” are the LLC encapsulations for routed
protocols. When XTP is being multiplexed for a single VC, it uses LLC 802.1/SNAP encapsulation using
XTP’s assigned EtherType 0x817d.

XTP packets can also be encapsulated directly into AAL 5 frames without using an LLC encapsulation.

10.3 IP encapsulation

The IP encapsulation for an XTP packet is shown in figure 39; the IP encapsulation follows the rules spec-
ified in RFC 791. (LLC and SNAP headers will be included as specified in RFC 1103 when IP datagrams
are transmitted on FDDI networks, in accord with RFC 1103.) The 1-byte protocol field in the IP header is
loaded with the decimal value 36; this value has been assigned to XTP to specify that XTP is the next higher-
layer protocol.

IPv6 encapsulation has not been specified at this time.

10.4 Security encapsulation

If XTP is used in a secure environment and if security guidelines are followed, then the complete XTP packet
could be encrypted and encapsulated within a “security frame.” XTP should not be affected by such an
encapsulation, and the design of a security frame is outside the scope of XTP. A security encapsulation is
logically no different from the other encapsulations although it is doubtful that the real-time performance lev-

MAC Frame

OrgCode (3) Type (2)

XTP PacketMAC Header MAC TrailerLLC Header SNAP Header

DSAP (1) Control (1)SSAP (1)

0 0x817D170 3170

FC (1)

FDDI Header

DestAddr (2) SrcAddr (2)

FC (1) DestAddr (6) SrcAddr (6)

802.5 Header

AC (1) DestAddr (6) SrcAddr (6)FC (1)

Figure 38  –  LLC layer encapsulations
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els of the protocol subsystem would be matched by the encryption subsystem unless specialized hardware
were available.

XTP Packet

IP Packet

IP Header

Figure 39  –  IP encapsulation

XTP PacketIPv6 Header
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Annex  A
(normative)

Check function

This is a C function for this checksum. This is the Braden, Borman, and Partridge algorithm as related by
Stevens in his book, UNIX Network Programming.

unsigned short xsum(int len, unsigned short* ptr) {
unsigned int sum = 0;
unsigned short oddbyte = 0;
unsigned short answer;

/*
* Algorithm: use a 32-bit accumulator (sum) and add sequential
* 16-bit words into it; at the end, add the two halves of sum together
* to fold back the carries. Return the one’s complement of this.
*/

while (len > 1) {
sum += *ptr++;
len -= 2;

}

/* Mop up an odd byte, if necessary. */
if (len == 1) {

*((unsigned char*)&oddbyte) = *(unsigned char*)ptr;
sum += oddbyte;

}

/* Add back carry outs from top 16 bits to low 16 bits */
sum = (sum >> 16) + (sum & 0xFFFF); /* Add high-16 to low-16 */
sum += (sum >> 16); /* Add carry */
answer = ~sum; /* One’s complement */

/* Return the answer */
return(answer);

}
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Annex  B
(normative)

Address resolution

This annex describes a family independent mechanism for address resolution within XTP. The packet for-
mats and structures allow for compatibility among XTP implementations that do not support this annex. The
principles for this approach are similar to those described in RFC 826.

This mechanism is not intended as a general address resolution mechanism. It is intended primarily for
those environments where network level encapsulations are not needed. If network level encapsulations are
required, address resolution is normally accomplished through the use of the network level address resolu-
tion mechanism.

B.1 Packet format

The packet format used for address resolution is a DIAG packet. The code for this type of DIAG is 8 (Address
Resolution). Currently there are two val values defined for this mechanism.

The message value for the packet is a full XTP Address Segment. The following fields in the XTP header
should be zero: key, sort, sync, and seq. The remaining header fields must contain valid values.

B.2 Host address resolution request

An address resolution request packet is a DIAG packet with code 8, val 30. It is used to determine an
unknown lower layer address of a desired host. The destination in the Address Segment describes the
desired host for which the address is being sought. The source field in the Address Segment describes the
sender. When an end-system receives an address resolution request packet with the destination host
address matching its host address, it must send an address resolution response packet to the source host.
Address resolution request packets use the broadcast or multicast facilities of the underlying service pro-
vider. All end-systems can cache the (source, MAC id) pair from address resolution request packets regard-
less of the destination host being targeted.

B.3 Host address resolution response

An address resolution response packet is a DIAG packet with code 8, val 31. It is used to notify a system of
a host’s lower layer address. The destination in the Address Segment describes the host that sent the
address resolution request. The source field in the Address Segment describes the sender. The (source,
MAC id) pair of the sender is the information being sought. When an end-system receives an address res-
olution response packet with the destination host address matching its own host address, the host caches
the (source, MAC id) pair and continues any activities that were blocked awaiting this information. Address
resolution response packets are sent directly to the target host and do not use the broadcast facilities of the
underlying service provider.

Table 10  –  Address resolution DIAG code and val values

code  Meaning val Meaning

8 Address Resolution 30 Host address resolution request

31 Host address resolution response
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Annex  C
(normative)

Service profile definitions

The service field of the Traffic Specifier indicates the type of service that is expected on this association. In
general, XTP is a universal receiver protocol in the sense that the transmitter’s actions cause the receiver
to react. The service values do not weaken that statement. Rather, the profiles defined in this annex for the
service values give the expected settings for the options bits in XTP packets, as a guideline to implementors.

The six service types currently defined for XTP are shown in table 11. These service types dictate the values
for options bits used during the packet exchanges. Options bits that are not listed are to be used as appro-
priate; those that are listed must use the value assigned.

The packet exchanges described in this annex assume an error-free data transmission. For profiles where
error detection and correction are necessary, the ECNTL packets will be used as defined by the protocol.

C.1 Traditional unacknowledged datagram service

The traditional unacknowledged datagram service, service value 0x01, is modeled after the UDP service.
This data is not error controlled, and the closing semantics require that the receiver not respond. There is
no indication of delivery. This service applies to either unicast or multicast. 

Initiating Endpoint:

– Set the CTIMEOUT to 0 to disable the zombie state;

– FIRST (and DATA, if necessary) packet options:;

– EDGE — off;

– NOERR — on;

– RES — off;

– NOFLOW — off;

Table 11  –  Service type values

Service Type of service

Decimal Hex

1 0x01 Traditional Unacknowledged Datagram Service

2 0x02 Acknowledged Datagram Service

3 0x03 Transaction Service

4 0x04 Traditional Reliable Unicast Stream Service

5 0x05 Unacknowledged Multicast Stream Service

6 0x06 Reliable Multicast Stream Service
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– FASTNAK — off;

– SREQ — off;

– DREQ — off;

– RCLOSE — on;

– WCLOSE — on if the end of the datagram is included;

– EOM — off;

– END — on if the end of the datagram is included.

C.2 Acknowledged datagram service

The acknowledged datagram service, service value 0x02, uses a single packet to transmit data, but
requests acknowledgment of the data’s receipt. This data is error controlled, so the closing semantics
require that the receiver respond. This service applies to both multicast and unicast.

Initiating Endpoint:

– Set the CTIMEOUT as appropriate;

– FIRST (and DATA, if necessary) packet options:

– EDGE — off;

– NOERR — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on if the end of the datagram is included;

– DREQ — off;

– RCLOSE — on;

– WCLOSE — on if the end of the datagram is included;

– EOM — off;

– END — off;

Corresponding Endpoint:

– Set the CTIMEOUT as appropriate. Zombie state is useful here;

– CNTL packet (in response to SREQ if no errors) options:
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– EDGE — off;

– NOERR — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — off;

– DREQ — off;

– RCLOSE — on;

– WCLOSE — on;

– EOM — off;

– END — on.

The corresponding endpoint goes into a zombie state for CTIMEOUT seconds.

C.3 Transaction service

The transaction service, service value 0x03, is only specified for unicast since there is no notion of a return
data stream in the XTP multicast. A multicast transaction can be built, however, using the techniques
described in annex E, "Multicast extensions."

A transaction is a three-way exchange, as shown in figure 40: one or more packets are sent as a request,
one or more packets are sent as a response only after the request has been completely received, and a final
CTNL packet acknowledges the response and closes the association.

FIRST

CNTL

DATA

CNTL

DATA

DATA

request

response

Figure 40  –  Transaction service profile

Initiating Endpoint Corresponding Endpoint
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Initiating Endpoint:

– Set the CTIMEOUT as appropriate;

– FIRST (and DATA, if necessary) packet (for sending request) options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on if the end of the transaction request is included;

– DREQ — off;

– RCLOSE — off;

– WCLOSE — on if the end of the transaction request is included;

– EOM — on if the end of the transaction request is included;

– END — off;

Corresponding Endpoint:

– Set the CTIMEOUT as appropriate;

– CNTL packet (in response to SREQ if no errors) options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — off;
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– DREQ — off;

– RCLOSE — on;

– WCLOSE — off;

– EOM — off;

– END — off;

– DATA packets (for sending response) options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on if the end of the transaction response is included;

– DREQ — off;

– RCLOSE — on;

– WCLOSE — on if the end of the transaction response is included;

– EOM — on if the end of the transaction response is included;

– END — off;

Initiating Endpoint:

– CNTL packet (in response to SREQ if no errors) options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;
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– FASTNAK — off;

– SREQ — off;

– DREQ — off;

– RCLOSE — on;

– WCLOSE — on;

– EOM — off;

– END — on.

The initiating endpoint goes into a zombie state for CTIMEOUT seconds.

C.4 Traditional reliable unicast stream service

The traditional reliable unicast stream service provides reliable full-duplex data transfer as provided by TCP,
as shown in figure 41. (Note that the DATA packets may be sent from either endpoint at any time after the
establishment of the association, and either side may send a WCLOSE bit first.)

Initiating Endpoint:

– Set the CTIMEOUT to 0 to avoid the zombie state;

– FIRST packet options:

FIRST (SREQ)

TCNTL

DATA

DATA (WCLOSE)

DATA

DATA (WCLOSE)

CNTL (WCLOSE | RCLOSE)

CNTL (END)

Initiating Endpoint Corresponding Endpoint

Figure 41  –  Traditional reliable streams service
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– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on;

– DREQ — off;

– RCLOSE — off;

– WCLOSE — on if last of data is included;

– EOM — off;

– END — off;

– DATA packet options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on if last of data included, else as appropriate;

– DREQ — off;

– RCLOSE — on if WCLOSE seen and all data received;

– WCLOSE — on if last of data is included;

– EOM — off;

– END — off;
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– CNTL packet options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — as appropriate;

– DREQ — off;

– RCLOSE — on if WCLOSE seen and all data received;

– WCLOSE — on if last of data sent;

– EOM — off;

– END — off;

Corresponding Endpoint:

– Set the CTIMEOUT as appropriate;

– TCNTL packet (in response to SREQ in FIRST packet) options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — off;

– DREQ — off;

– RCLOSE — on if WCLOSE seen and all data received;
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– WCLOSE — on if no data to be sent;

– EOM — off;

– END — on if WCLOSE and RCLOSE have been seen;

– CNTL packet options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — as appropriate;

– DREQ — off;

– RCLOSE — on if WCLOSE seen and all data received;

– WCLOSE — on if last of data sent;

– EOM — off;

– END — on if WCLOSE and RCLOSE have been seen;

– DATA packet options:

– NOCHECK — off;

– EDGE — off;

– NOERR — off;

– MULTI — off;

– RES — off;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on if last of data included, else as appropriate;

– DREQ — off;
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– RCLOSE — on if WCLOSE seen and all data received;

– WCLOSE — on if last of data is included;

– EOM — off;

– END — off;

The corresponding endpoint goes into a zombie state for CTIMEOUT seconds.

C.5 Unacknowledged multicast stream service

The unacknowledged multicast stream provides transmission of data with no data transfer reliability and no
group membership reliability. The multicast transmitter will emit the data, but will be unaware of whether any
receivers receive it. This scenario parallels the situation with broadcast radio and television; the transmitter
transmits, but does not know if any of its transmissions are received, or by whom.

Initiating Endpoint:

– FIRST (and subsequent DATA) packet options:

– NOERR — on;

– MULTI — on;

– NOFLOW — on;

– FASTNAK — off;

– SREQ — off;

– DREQ — off;

– RCLOSE — on;

– WCLOSE — off;

– EOM — off;

– END — on if the association is to be terminated.

C.6 Reliable multicast stream service

The reliable data multicast transfer requires that the group membership be stable and that all data be trans-
ferred reliably. This scenario is achieved by having the multicast transmitter emit FIRST and subsequent
DATA packets with MULTI and RCLOSE both set, but with NOFLOW and NOERR both clear. These settings
assure that the data flow itself will be fully error-controlled and thus fully reliable.

To ensure group membership reliability, the multicast transmitter must set SREQ on the FIRST packet. This
allows XTP to build the data structure identifying group members. Whenever SREQ is set in an outgoing
packet, XTP will solicit a status report from each receiver (including a synchronizing handshake, if neces-
sary). From these responses the multicast transmitter can determine the current state of each group mem-
ber (both identity and progress). If any of the group members do not reply, then the multicast association
can be aborted by having the multicast transmitter send an END bit to the multicast group. If the reliability
semantics permit the group to continue after a group member dies, this can be effected by having the mul-
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ticast transmitter send the non-responsive member an END bit on the receiver’s unicast address, thus
removing it from the group. By setting CTIMEOUT to an appropriate value, this allows the designer to bound
the amount of time (equal to CTIMEOUT interval) that the total group will stall, waiting for a receiver to
respond, before deleting that member from the group and continuing without it.

Initiating Endpoint:

– Set the CTIMEOUT as appropriate;

– FIRST (and subsequent DATA) packet options:

– NOCHECK — off;

– NOERR — off;

– MULTI — on;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — on, and as appropriate;

– RCLOSE — on;

– WCLOSE — on if the end of the data is include;

– END — off;

Corresponding Endpoint:

– Control packet (in response to SREQ) options:

– NOCHECK — off;

– NOERR — off;

– MULTI — on;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — off;

– RCLOSE — on if WCLOSE seen and all data received;

– WCLOSE — on;

– EOM — off;

– END — off;

Initiating Endpoint:
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– CNTL packet (to end multicast association) options:

– NOCHECK — off;

– NOERR — off;

– MULTI — on;

– NOFLOW — off;

– FASTNAK — off;

– SREQ — off;

– RCLOSE — on;

– WCLOSE — on (unless this is an abort);

– EOM — off;

– END — on if RCLOSE seen from all receivers, or if abort.
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Annex  D
(informative)

Additional traffic specifier formats

The traffic format 0x02, shown in figure 42 has been assigned to the quality of service parameters defined
by the Technical University of Berlin.

This traffic specification has two identical fields for specifying quality of service parameters. The initiator_qos
specifies the parameters for the data flow from the context initiating the connection to the responder(s) of
this connection. The responder_qos field similarly holds the parameters describing the user data flow from
the responding context(s) of the connection to the initiating context (reverse data stream). Within both of
these fields are structures to specify message size, throughput, delay characteristics and reliability of the
data transfer. The transport system (XTP and its underlying service) has to guarantee these parameters as
described in an additional parameter, the Guarantee Class (GClass).

The traffic specifier is negotiated during the establishment of the connection. Furthermore, renegotiations
may appear during the lifetime of the connection as described in 8.2.5, “Traffic specification negotiation.”
This negotiation takes place between all involved communicating entities (initiating user, initiating XTP-con-
text, network provider, responding XTP-context(s), responding user(s)). Specific functions may map this
traffic specifier onto QoS-parameters of underlying providers (e.g., the traffic descriptor of an ATM connec-
tion).

To make the negotiation of the parameters more effective, both desired and acceptable (threshold) values
for all negotiable parameters are given. As an example, the transport user could specify a desired transit
delay of 25 ms and an acceptable delay of 35 ms. The connection will be established only if the desired delay
does not exceed the acceptable 35 ms after the complete negotiation. This implies that the acceptable value
cannot be negotiated and a QoS negotiation may become unsuccessful before the complete negotiation
handshake, if the desired value exceeds the acceptable value during the negotiation process.

The assignment of the strategy parameters is not yet defined; they must be zero. The meaning of the other
parameters is as follows:

traffic (52)

tformat 0x02initiator_qos (24) responder_qos (24)

GClass (1) RClass (1) TSDU_size (10) Throughput (6) TransDelay (6)

strategy (2) value (4) limit (4)

strategy (2) value (2) limit (2)

strategy (2) value (2) limit (2)

null (4)

Figure 42  –  Traffic field structure for format 0x02
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Guarantee Class (GClass) describes the probability that the negotiated QoS is actually provided by the
transport system and mechanisms if the QoS is violated. Guarantee Classes are defined in table 12.

Reliability Class (RClass) indicates the degree to which the protocol supports error detection and error
recovery. Reliability Classes are defined in table 13.

Maximum TSDU (message) size (TSDU_size) is the maximum allowed size of one message to transmit,
given in bytes:

– strategy: MBZ;

– value: negotiable parameter describing the maximum message size;

– limit: lowest acceptable maximum message size.

Throughput (Throughput) is the number of sent/received messages per second:

– strategy: MBZ;

– value: negotiable parameter describing the throughput;

– limit: lowest acceptable throughput.

Table 12  –  Guarantee class

GClass Meaning

0 Best-effort provision of QoS, no indication of QoS violation to the user

1 Best-effort provision of QoS, indication of QoS violation to the user

2 Guaranteed provision of QoS, no indication of QoS violation to the user

3 Guaranteed provision of QoS, indication of QoS violation to the user

Table 13  –  Reliability class

RClass Meaning

0 unreliable; duplex transport of user data without failure indication

1 unreliable; duplex transport of user data with indication of lost data

2 unreliable; duplex transport of user data with indication of lost and corrupt data

3 partially reliable; duplex transport of user data with correction of lost data, but 
with no correction of corrupted data

4 reliable, duplex transport of user data
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Transit Delay (TransDelay) is the elapsed time between sending a message and its delivery to the peer user.
The delay is measured in milliseconds:

– strategy: MBZ;

– value: negotiable parameter describing the delay;

– limit: highest acceptable delay.
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Annex  E
(informative)

Multicast extensions

XTP multicast mechanisms support reliable 1-to-N communication, yet there are many multi-party commu-
nication paradigms. Unfortunately, collecting a set of appropriate abstractions can cause a protocol specifi-
cation to become overly complex. In addition, it is not the place of a protocol specification to determine the
set of paradigms; rather, the protocol should provide tools upon which communication services can be built.
In this respect, the XTP multicast mechanisms can be used to build interesting extensions to the 1-to-N mul-
ticast service. Examples of such extensions are given here.

E.1 Concentration and cloning

Concentration and cloning are optional extensions to XTP multicast that can be built using various multicast
and unicast mechanisms in XTP. Concentration is a reliable transmission of arbitrary messages from a set
of hosts in the multicast group to a single host. This is the inverse of multicast, where multiple data streams
are concentrated into one receiving host. If data from N hosts are to be concentrated at one host, then N
contexts are required at the concentration host. No special facilities are defined in XTP for concentration;
each concentration data stream is implemented as a new unicast XTP association.

The technique of cloning, described in this annex, can be used to improve efficiency of the concentration. If
a large number of concentration channels are needed, there may be an advantage to creating additional
contexts automatically instead of using explicit association setup procedures. The simplest method is to
implement a persistent “listen” operation that clones a sequence of active contexts in response to incoming
FIRST packets.

E.2 N-by-M communication

XTP multicast mechanisms support reliable 1-to-N communication. Application data flows involving N data
sources sending to M data sinks, or N-by-M communication, must be constructed using multiple XTP asso-
ciations. The following discussion is an illustration of how an N-by-M service can be derived from the basic
XTP multicast facilities. In particular, note the use of XTP cloning and of a transport layer bridge to multiplex
N data streams onto a single output channel.

MCAST

CLONE

Sequencer

Revr 1

Host A

Revr 2

Host B

Revr 3

Host C

Node FIRST (MULTI)

FIRST (MULTI)

FIRST (MULTI)

FIRST

Figure 43  –  N-by-M connection setup
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The N-by-M service described here is a message-based, reliable, ordered, multi-peer service. A set of N
communicants concurrently transmit messages to each other (symmetric group communication), and the
messages are reliably delivered to each member in the group with a mutually consistent ordering at M
receiving sites. This scheme for atomic multicasting between peers in a distributed application exhibits
strong reliability and a simple client-server structure.

Communication set-up for the N-by-M service is shown in figure 43. An application entity at the sequencer
node for the group sets up a reliable multicast connection with the receivers in the multicast group. When a
receiver accepts the FIRST packet sent to establish the reliable multicast association, the receiver sends a
unicast FIRST packet back to the sequencer node. Using cloning, the multicast transmitting context at the
sequencer transparently establishes a reverse channel with each group member. That is, each group mem-
ber now has a reliable XTP unicast association to the sequencer node.

Message transfer in the atomic N-by-M multicast service is illustrated in figure 44. Group members inject
their messages into the network asynchronously (1). A message is first sent to the sequencer (2) where the
message is sent out on the reliable multicast connection (3 and 4). This relaying of messages is performed
by a transport layer bridge (3), that is, a mechanism that controls the multiplexing of data from a set of receiv-
ing contexts into a single (multicast) transmitting context. In this case, the transport layer bridge must pre-
serve message boundaries when forwarding data from the back-channels into the outgoing multicast

MCAST

CLONE

Sequencer

Revr 1

Host A

Node

CLONE

CLONE

RCV

XMT

Ordered Msgs

Local Msgs

Revr 2

Host B

RCV

XMT

Ordered Msgs

Local Msgs

Revr 3

Host C

RCV

XMT

Ordered Msgs

Local Msgs 1

2

4

3

Figure 44  –  N-by-M reliable ordered multicast
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channel. Flow and rate control on the incoming back-channels can be used to throttle members. The XTP
associations ensure reliable delivery and a mutually consistent message ordering of the global message
stream at each group member. The sequencer node detects receiver failure using its knowledge of the
active group membership through the XTP group management facility.
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